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GRAPH THEORY AND PFAFFIAN REPRESENTATIONS

OF ISING PARTITION FUNCTION.

THIERRY GOBRON

Abstract. A well known theorem due to Kasteleyn states that the partition function of
an Ising model on an arbitrary planar graph can be represented as the Pfaffian of a skew-
symmetric matrix associated to the graph. This results both embodies the free fermionic
nature of any planar Ising model and eventually gives an effective way of computing its
partition functions in closed form. An extension of this result to non planar models expresses
the partition function as a sum of Pfaffians which number is related to the genus of the
oriented surface on which the graph can be embedded.

In graph theory, McLane’s theorem (1937) gives a characterization of planarity as a
property of the cycle space of a graph, and recently, Diestel et al. (2009) extended this
approach to embeddings in arbitrary surfaces.

Here we show that McLane’s approach naturally leads to Kasteleyn’s results: McLane
characterization of planar graphs is just what is needed to turn an Ising partition function
into a Pfaffian.

Using this approach, we prove that the Ising partition function on an arbitrary non planar
graph can be written as the real part of the Pfaffian of a single matrix with coefficients taken
in a multicomplex algebra Cg̃, where g̃ is the non-orientable genus, or crosscap number, of
the embedding surface.

Known representations as sums of Pfaffians follow from this result. In particular, Kaste-
leyn’s result which involves 4g matrices with real coefficients, g orientable genus, is also
recovered through some algebraic reduction.

1. Introduction

A few years after Onsager’s solution of the Ising model on a square lattice [1], an alter-
native, combinatorial method has been elaborated through the pioneering works of Kac and
Ward [2], Potts and Ward [3] and Hurst and Green [4]. In these works, the evaluation of
Ising partition function on a rectangular array was reduced to a combinatorial enumeration
of perfect matchings (dimer coverings in the physics litterature), leading to an expression in
terms of the Pfaffian of a related skew-symmetric matrix. This method acquired a deeper
signification about fifty years ago, when Fisher [5] and Kasteleyn [6, 7, 8] showed that it
applies equally to an arbitrary planar graph.

Numerous attempts have been made to generalize these results to non-planar graphs.
Kasteleyn’s landmark result [8] states that the partition function can be written as a sum of
Pfaffians, whose number grows exponentially with the orientable genus of the graph. This
statement has been given a better mathematical basis only rather recently [9, 10] and also
extended to non orientable surfaces [11]. Finding a sensible lower bound on this number is
still an open problem.
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Enumeration of dimer coverings and evaluation of Ising partition function are clearly two
deeply connected problems, but it should be stressed that they differ somewhat on this point:

In the dimer problem, one counts the number of dimer coverings on a given graph, or,
in other words, the number of subgraphs for which the incidence number is exactly one on
every vertex. For bipartite graphs, it reduces to the old permanent-determinant problem
[12] and there are well known complexity issues [13, 14]. However the graphs for which the
dimer covering enumeration can be turned into a Pfaffian are not necessarily planar [15, 16].
Accordingly, some exact results on nonplanar graphs have been obtained in the context of
statistical physics [17, 18].

In the Ising case, one computes a weighted sum over all closed curves of a given graph,
that is over all subgraphs with an even incidence number on each vertex. In contradistinction
with the dimer problem, the enumeration of these subgraphs on an arbitrary connected graph
G = (V,E) is trivial and equal to 2β1 where β1 is the first Betti number, β1(G) = |E|−|V |+1.
The complexity in evaluating the partition function comes from the introduction of a weight
function on the edge set and there seems to be no exception to Kasteleyn’s planarity rule.

In the present paper, we consider again Kasteleyn’s combinatorial approach, giving another
glimpse to its graph theoretical foundations.

Our starting point consists in considering the Ising model on an arbitrary graph and derive
a set of nonlinear algebraic equations in the entries of an associated skew-symmetric matrix,
so that any consistent solution to these equations would lead to a representation of the Ising
partition function as a Pfaffian. We thus let aside Kasteleyn’s edge orientation method, valid
when matrix entries are chosen in {−1, 0, 1} and look for a solution with coefficients in R

or C. Rather surprisingly, the existence (or not) of such a solution derives straightforwardly
from a classical planarity criterion [19].

Theorem 1.1. (MacLane 1937): A Graph is planar if and only if its cycle space admits a
basis in which every edge appears at most twice.

This criterion allows us to prove in our setting that planarity is a necessary and sufficient
condition for representing the Ising partition function as a single Pfaffian.

Recently, a generalization of McLane’s criterion to non planar graphs has been considered
[20], from which we draw some new results on non planar graphs. Our main result is the
following: the Ising partition function on a non planar graph can be written as the real part
of the Pfaffian of a single matrix, which coefficients are chosen in a multicomplex algebra
Cg̃, where g̃ is the non-orientable genus, or crosscap number, of the embedding surface.

Old and new representations as sums of Pfaffians with real or complex coefficients follow
from this result as corollaries. Basically, such sums involve 2g̃ terms rather than 4g (g
orientable genus). For orientably simple graphs, g̃ = 2g + 1, we recover Kasteleyn’s results
through some further algebraic reduction. For non orientably simple graphs, g̃ < 2g + 1
and our result does improve Kasteleyn’s one. However the number of Pfaffians remains
exponential in g̃.

In Section 2, we define our setting and present some preliminary results that we use later in
this work; when using terminology and concepts from graph theory, we try to follow standard
textbooks such as Harary’s [21] or Diestel’s [22], to which we refer for a thorough exposition.
The Pfaffian reduction formula is known since a long time but we found rather few quotations
[23]. It is related, if not equivalent, to the more well-known Plücker-Grassmann relations
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between determinants. The connection between minor graphs and Pfaffian reduction formula
is essential in the present approach as it allows to a substantial reduction of the algebraic
problem at hand. In Section 3, we state our main results. In Section 4, we give the proofs.
In Section 5, we introduce a Grassman representation [24, 25] which allows us to state the
Ising representation problem in terms of a system of algebraic equations. For completeness,
we also provide a proof of the Pfaffian reduction formula.

2. Preliminaries

The problem we want to address is the representation of the Ising partition function on
an arbitrary finite graph as the Pfaffian of some related matrix. Hereafter, we recall the first
steps in this approach, fix some notations and give precise definitions that will be used to
state the results of next section. We conclude this section with some preliminary results.

• Ising Partition Function.

Let G = (V,E) be a finite simple graph. To each vertex v ∈ V , we attach a variable
σv ∈ {−1, 1}. Given a collection of real valued interaction terms, J = {Je ≥ 0, e ∈ E}, we
define the inhomogeneous Ising Hamiltonian on the space of configurations Ω = {−1, 1}|V |,
as

(2.1) H(σ) = −
∑

{x,y}∈E

Jx,yσxσy

and the associated Ising partition function Zβ
Ising(G, J) as

(2.2) Zβ
Ising(G, J) =

∑

σ∈Ω

exp{−βH(σ)}

Note that for clarity of the exposition we consider here only simple graphs so that (un-
oriented) edges can be identified with (un-ordered) pairs of vertices. Without loss of gener-
ality, the graph we will consider in the sequels are 2-connected simple graphs without loops.
In more general cases, the partition function either factorizes or can be trivially rewritten so
that one falls back into the previous class of graphs. In the same line of thought, we do not
introduce explicitely boundary terms or external fields, which can be considered through a
modification of the underlying graph and/or a particular choice of interaction strength on
some edges. Finally, we also reduce to ferromagnetic interactions (J. ≥ 0), since we want to
keep with the most standard concept of weight functions, but dealing with “signed weight
functions” would work as well.

The well known high temperature expansion of the Ising partition function leads to an
expression of Zβ

Ising(G, J) as a sum over a class of subgraphs of G.

Zβ
Ising(G, J) = 2|V |

(

∏

e∈E

cosh(βJe)
)

∑

C∈C(G)

∏

e∈C

tanh(βJe)(2.3)

where C(G) is the set of closed curves on G, that is the set of all edge subsets C ⊂ E such
that each vertex v ∈ V is incident with an even number of edges in C.

Note that if one introduce the operation of symmetric difference △:

(2.4) A△B =
(

A \B
)

∩
(

B \ A
)

for all sets A,B
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then (C(G),△) is the cycle space of G and has the structure of a vector space over the field
F2 = Z/2Z . Under this structure, the set of all cycles on G (more precisely their edge sets)
is a generating family for C(G)[22].

Here we leave aside the physical meaning of (2.3) and restrict our interest to the repre-
sentation of the sum in the right hand side. In the sequels, we consider the following closely
related quantity, which we still call a partition function for obvious reasons.

Definition 2.5. Let G = (V,E) be a finite, non-oriented graph and w : E → R
+ a weight

function defined on the edge set.

We define the partition function of G with weight function w, as

(2.6) ZG(w) =
∑

C∈C(G)

w(C)

where the weight of any closed curve C ⊂ E is defined as the product of its edge weights:

(2.7) w(C) =







1 if C = ∅
∏

e∈C

w(e) otherwise

The partition function ZG(w) is clearly related to the Ising partition function on the same
graph. Choosing the weight function as,

(2.8) w(e) = tanh(
βJe
2

) ∀e ∈ E

we have the correspondence

Zβ
Ising(G, J) = 2|V |

(

∏

e∈E

cosh(βJe)
)

ZG(w)(2.9)

• Dart graphs and perfect matchings.

The next step consists in mapping the expression of the (Ising) partition function, onto
a weighted dimer problem on an auxiliary graph. Such graphs have been originally called
“terminal graphs” [8], but are named hereafter dart graphs in order to emphasize their
relation to other classes of derived graphs, such as the “line graphs” [28]. The choice of this
new name stems from the fact that definitions of both classes are identical, just changing
edges (or lines) by “half-edges” or darts.

Definition 2.10. Let G = (V,E) a graph. Its dart graph D(G) = (VD, ED) is the simple
unoriented graph which vertex set VD identifies with the set of darts on G:

(2.11) VD =
{

(v, e) ∈ V ×E such that v is incident with e
}

and such that there is an edge beween two vertices if and only if they have exactly one common
element,

(2.12) ED =
{

{

(v, e), (v′, e′)
}

∈ VD × VD such that either v = v′ or e = e′
}

A dart graph has necessarily an even number of vertices and not every graph is the dart
graph of some other.
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The edge set of a dart graph D(G) splits in two disjoint subsets,

ED = EV
D ∪ E

E
D ,(2.13)

EV
D =

{

{

(v, e), (v′, e′)
}

∈ VD × VD such that v = v′ and e 6= e′
}

(2.14)

EE
D =

{

{

(v, e), (v′, e′)
}

∈ VD × VD such that v 6= v′ and e = e′
}

(2.15)

If G has no isolated point, the graph (VD, E
V
D ) has |V | connected components, each one being

a complete graph. Moreover, there is a one to one correspondence which associates every
edge e ∈ E with ((v, e), (v′, e)) ∈ EE

D so that both sets can be identified

(2.16) EE
D ≡ E

As noted by Kasteleyn [8], interest in dart graphs lies in the close connection between the
set of closed curves on a graph G, and the perfect matchings on D(G).

Definition 2.17. Let G = (V,E) be a graph. A perfect matching (or equivalently a dimer
configuration ) on G is a subset E ′ ⊂ E, such that each vertex v ∈ V is incident with exactly
one edge in E ′.

For an arbitrary graph, the existence (or not) of a perfect matching can be proven using
Tutte’s characterization theorem[15]. On a dart graph, it is a straightforward property:

Proposition 2.18. Let G = (V,E) be a graph. If it is a dart graph, then it admits at least
one perfect matching.

Under the identification (2.16), the connection between closed curves on a graph G and
perfect matchings on its dart graph D(G) can be expressed as follows:

Proposition 2.19. Let M1, M2 be any pair of perfect matchings on D(G), the set C =
(M1△M2) ∩ E

E
D is a closed curve on G.

Denote by M(G) the set of perfect matchings on D(G). Then, given a fixed perfect
matching M0 ∈M(G), one can construct a mapping ΦM0 :M(G)→ C(G), which associates
any perfect matching on D(G) to a closed curve on G, as

(2.20) ΦM0(M) = (M0△M) ∩ EE
D

ΦM0 is clearly surjective, but generally not one-to-one. This induces an equivalence relation
onM(G) as

(2.21) M1 ∼M2 ⇐⇒ ΦM0(M1) = ΦM0(M2) ∀M1,M2 ∈M

On an arbitrary connected graph G = (V,E), the number of closed curves is 2β1 where

β1 = |E| − |V |+ 1

is the first Betti number of G. This is obviously the same as counting the number of
equivalence classes inM(G). These equivalence classes have not necessarily the same number
of elements and enumeration of perfect matchings on a dart graph remains non trivial in the
general case. A particular exception are the 3-regular graphs, on which the mapping ΦM0 is
one-to-one [26].

Using this correspondence, the notion of Pfaffian representation can be given a precise
meaning.
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• incidence matrices, weights and Pfaffian representations.
We introduce a generalized notion of incidence matrix with complex valued coefficients.

Definition 2.22. Let G = (V,E) a connected graph and D(G) its dart graph. AG ∈
M|VD(G)|(C) is an incidence matrix on D(G) if AG is an antisymmetric matrix which en-
tries are in one-to-one correspondence with the elements of VD(G), so that

(2.23) {d1, d2} 6∈ ED(G) =⇒ AG
d1,d2

= 0

Note that the coefficients of the matrix need not be taken in {−1, 0, 1}, but are arbitrary
complex numbers. We reserve the name of weighted incidence matrix to the following.

Definition 2.24. Let G = (V,E) a connected graph, M0 a fixed perfect matching on D(G)
and AG an incidence matrix defined as above. Given a weight function w on E ≡ EE

D(G)
with value in R

+,∗, the matrix AG,M0(w) ∈M|VD(G)|(C) with coefficients

(2.25) AG,M0

d1,d2
(w) =











w−1({d1, d2})A
G
d1,d2

if {d1, d2} ∈ E
E
D (G) ∩M0

w({d1, d2})A
G
d1,d2

if {d1, d2} ∈ E
E
D (G) \M0

AG
d1,d2

otherwise.

is the weighted incidence matrix associated to (G,M0, A
G, w).

We now can state a precise definition of a Pfaffian representation:

Definition 2.26. Let G = (V,E) a connected simple graph. The partition function on G
admits a Pfaffian representation if there exists a perfect matching M0 on D(G), an incidence
matrix AG and a constant Λ 6= 0 such that for all weight functions w : E → R+, one has

(2.27) ZG(w) =
1

Λ
w(M0 ∩ E

E
D (G)) Pf

(

AG,M0(w)
)

The main motivation for such a definition is the fact that the Pfaffian of a weighted
incidence matrix AG,M0(w), can be always written as a sum over all closed curves onG, so that
the identity (2.27) derives from identification of the coefficients of two similar expansions.
Starting from the definition of a Pfaffian and setting |VD(G)| = 2n, n ∈ N, we have

(2.28) Pf(AG,M0(w)) =
1

2n n!

∑

σ

(−1)|σ|AG,M0

σ(d1),σ(d2)
(w) · · ·AG,M0

σ(d2n−1),σ(d2n)
(w)

where the summation runs over the set SVD(G) of all permutations on VD(G). Taking into
account the above definition of an incidence matrix, each non zero term can be associated to
a perfect matching on D(G) and, collecting all edge weights, the expansion can be written
as

Pf(AG,M0(w)) =
∑

M∈M(G)

1

2n n!

∑

σ∈Π(M)

(−1)|σ|AG
σ(d1),σ(d2) · · ·A

G
σ(d2n−1),σ(d2n)

× w(M ∩ (EE
D (G) \M0))w

−1(M ∩ EE
D (G) ∩M0))(2.29)
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where Π(M) is the set of 2n n! permutations of SVD(G) contributing to the same perfect
matching M ,

(2.30) Π(M) =
{

σ ∈ SVD(G), {{σ(d1), σ(d2)}, · · · , {σ(d2n−1), σ(d2n)}} =M
}

As a consequence of the antisymmetry of AG, the 2n n! terms of the summation on Π(M)
are equal for every M ∈M(G). Now the weights appearing in the right hand side of (2.29)
can be rewritten as

w(M ∩ (EE
D (G) \M0)) w

−1(M ∩ EE
D (G) ∩M0))

= w−1(M0 ∩ E
E
D (G)) w(E

E
D(G) ∩ (M△M0))(2.31)

and the expression (2.29) can be turned into a weighted sum over the closed curves in
C(G),

(2.32) Pf(AG,M0(w)) = w−1(M0 ∩ E
E
D (G))

∑

C∈C(G)

w(C)FAG(M0, C)

where for all C ∈ C(G) and any reference perfect matching M0, FAG(M0, C) is the sum
over all perfect matchings mapped to C by ΦM0 ,

(2.33) FAG(M0, C) =
∑

M∈Φ−1
M0

(C)

1

2n n!

∑

σ∈Π(M)

(−1)|σ|AG
σ(d1),σ(d2) · · ·A

G
σ(d2n−1),σ(d2n)

Using this expression and the vector space structure of C(G), we have the following char-
acterization,

Lemma 2.34. The partition function of G admits a Pfaffian representation if and only if
there exists an incidence matrix AG, a reference dimer configuration M0 and a cycle basis
BG on (C(G),△) such that ∀C ∈ C(G), FAG(M0, C) 6= 0 and

(2.35) FAG(M0, C) = FAG(M0, C△γ) ∀C ∈ C(G), ∀γ ∈ BG

Remark 2.36. A change of reference perfect matching just induces a shift in the mapping
for any two reference mappings M0,M1 ∈M(G), one has

(2.37) ΦM1(M) = ΦM0(M)△ΦM1(M0) ∀M ∈M(G)

The set of equations (2.35) remains globally invariant under such a shifh and the existence
(or not) of a Pfaffian representation (2.27) is independent on the choice of the reference
perfect matching.

Remark 2.38. When all vertices of G have an even degree, the reference perfect matchingM0

can be chosen so that EE
D (G)∩M0 = ∅, the dependence on the weight function in definitions

(2.25) and (2.27) simplifies and more classical expressions are recovered. In the general case,
such a reference perfect matching does not exist and Proposition 2.18 suggests to take instead
EE

D (G) as a reference perfect matching. See also reference [8] for an alternative approach in
the later case.

We end this section with a relation between the notion of minor graph and the Pfaffian
reduction formula.

• Minor graphs and Pfaffian reduction formula.
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Informally a graphG1 is a minor of another graphG2 (notedG1 4 G2 ) if it can be obtained
from it by repeating in some arbitrary order the two following elementary transformations:
(a) deleting one edge; (b) contracting one edge, i.e. identifying its two end-vertices into a
single vertex and deleting any loop or parallel edges that may arise. We refer to [22] for a
more formal definition.

In the next two figures, two simple examples of these transformations are shown, which
have some relevance in the present context: starting from a planar square lattice, one may
form an hexagonal lattice by deleting one edge per site (Figure 1), while the contraction of
the same set of edges leads to the triangular lattice (Figure 2).

Figure 1. Example of minor graph obtained by deleting a subset of edges:
an hexagonal lattice is formed out of a square lattice.

Figure 2. Example of minor graph obtained by contracting a subset of edges:
a triangular lattice is formed out of a square lattice.

On the other side, the Pfaffian reduction formula [23] is a well known property of Pfaffians
and can be stated as follows.
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Let A =
(

Aij

)

i,j∈{1,...,2n}
a matrix of order 2n and K a subset of the set of indices

{1, . . . , 2n}. We denote by AK the sub-matrix of A obtained by deleting all rows and
columns not indexed by an element of K.

(2.39) AK =
(

Aij

)

i,j∈K

Similarly, we denote by AK̄ the antisymmetric matrix indexed by the complementary set of
indices K̄ = {1, . . . , 2n} \K, which elements are:

(2.40)
(

AK̄
)

ij
= −

(

AK̄
)

ji
= Pf

(

A(K∪{i,j})

)

for all i < j ∈ K̄

We stress that in definitions (2.39)–(2.40), the order on any subset of indices is the one
induced by the order on {1, . . . , 2n}. Pfaffian reduction formula reads:

Proposition 2.41. Let A an antisymmetric matrix of order 2n and K a subset of indices
of order 2p, 0 < p < n such that Pf(AK) 6= 0. We have:

(2.42) Pf(A) =
[

Pf(AK)
]−(n−p−1)

Pf(AK̄)

The connection between minor graphs and Pfaffian reduction formula is as follows:

Proposition 2.43. Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two simple graphs
such that G1 4 G2. Consider a transformation which reduces G2 to G1 and denote by Ed

2

(respectively Ec
2 ) the set of deleted (respectively contracted) edges in this transformation.

Let AG2 be an incidence matrix (in the sense of 2.22 ) on D(G2) such that

(2.44) AG2
d1,d2

= 0 if either d1 or d2 is incident with an edge in Ed
2

Let K be the set of vertices in D(G2) incident with an edge in Ed
2 ∪ E

c
2. Then the set

K̄ = VD(G2) \K can be identified with VD(G1), and the matrix
[

AG2
]K̄

defined as in (2.40)
is an incidence matrix on D(G1).

In the above proposition, edge contraction (respectively edge deletion) is given a counter-
part as a transformation of the incidence matrix associated to the dart graph. Contracting
one edge means simply integrating out (using the Pfaffian reduction formula) the correspond-
ing matrix entries. Deleting one edge may have various representations depending on the
choice of the reference dimer configuration. Here we take M0 = EE

D (G), which is consistent
with the general case (proposition 2.18), and edge deletion corresponds to factorizing out
the associated edge weight. Note in particular that by Proposition 2.41, both Pfaffians are
proportional in some functional sense.

Remark 2.45. The minor relation is a partial order on the set of graphs, and in particular
the genus of a graph is always larger or equal than the genus of any of its minors. This
property does not transfer to the associated dart graphs and D(G1) may have a larger genus
than D(G2) even if G1 4 G2.
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3. Main results.

In this section, we state our main results on the Pfaffian representations of partition
functions on a graph G, starting from definitions 2.5 and 2.26.

Our first result is the well known theorem due to Kasteleyn [8].

Theorem 3.1. The partition function on a graph G admits a Pfaffian representation if and
only if G is planar.

The proof presented here is independent on the orientability criterion used by Kasteleyn
in his original proof. Instead, we emphasize a connection between this representation prob-
lem and McLane’s planarity criterion, Theorem 1.1, which is interesting in its own right.
Incidentally, we prove also that in contradistinction with the dimer problem, there is no
“Pfaffian” non-planar graph for the Ising model.

Furthermore, the approach presented here allows for some new representations of the
partition function when G is a non-planar graph. For all positive integer n, let Cn be the
multicomplex algebra of order n [29] and Re the linear operator Cn → R which associates
to any element its real part. Our main result is the following:

Theorem 3.2. Let G = (V,E) be a graph of nonorientable genus g̃. There exist an incidence
matrix AG on D(G) (in the sense of 2.22 ) with coefficients in Cg̃, a constant Λ ∈ Cg̃ and
a reference perfect matching M0 such that for all edge weight functions on G, the partition
function on G can be written as

(3.3) ZG(w) = w(M0 ∩ E
E
D (G)) Re

[

Λ Pf
(

AG,M0(w)
)]

Note that the above expression depend on the non orientable genus [30], that is the minimal
number of crosscaps a surface should have to embed G without edge crossings.

In the present work, we limit ourselves to the simplest application of Equation (3.3), that
is the derivation of an expression of the partition function of a nonplanar graph as a sum of
Pfaffians. The first one is in terms of the non orientable genus and involves matrices with
complex coefficients:

Corollary 3.4. Let G = (V,E) be a graph of nonorientable genus g̃. There exist a family
of incidence matrices (AG

j )j∈{1,··· ,2g̃} on D(G) (in the sense of 2.22 ) with coefficients in
C, constants (Λj)j∈{1,··· ,2g̃} in C and a reference perfect matching M0 such that for all edge
weight functions on G, the partition function on G can be written as

(3.5) ZG(w) = w(M0 ∩ E
E
D (G)) Re

[

2g̃
∑

j=1

Λj Pf
(

AG,M0

j (w)
)]

A similar expression has been derived by Tessler [11], building on Kasteleyn’s approach.
The nonorientable genus g̃ of a graph G is related to its orientable genus g through the
inequality [31]

(3.6) g̃ ≤ 2g + 1

When the graph is non orientably simple (e.g. projective grids), the non-orientable genus
can be much smaller than this bound, so that the expansion 3.5 is a real improvement over
an expansion in terms of the orientable genus.
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A proof of inequality (3.6) comes from the fact that starting from any orientable embedding
in a surface of genus g, one can construct a nonorientable embedding of nonorientable genus
2g+1. We give an explicit construction on a surface with 2g+1 crosscaps, showing that every
edge passes through them an even number of times. As a consequence, both entries of the
incidence matrix and constant that appear in Theorem 3.2 can be taken in the subalgebra of
C2g+1 generated by even products of generators. This leads to an expansion in terms of 22g

Pfaffians of matrices with real coefficients, equivalent to the one stated first by Kasteleyn.

Corollary 3.7. Let G = (V,E) be a graph of orientable genus g. There exist a family of
incidence matrices (AG

j )j∈{1,··· ,4g} on D(G) (in the sense of 2.22 ) with coefficients in R,
constants (Λj)j∈{1,··· ,4g} in R and a reference perfect matching M0 such that for all edge
weight functions on G, the partition function on G can be written as

(3.8) ZG(w) = w(M0 ∩ E
E
D (G))

4g
∑

j=1

Λj Pf
(

AG,M0

j (w)
)

In the rest of the section, we give a sketch of the proof of Theorem 3.1, explain the
connection with McLane’s criterion and prepare for the derivation of Theorem 3.2. The first
step is built on Proposition 2.43 and is the following

Theorem 3.9. Let G1 and G2 be two simple graphs such that G1 4 G2 and A
G2 an incidence

matrix on D(G2). There exists an incidence matrix AG1 on D(G1), a constant Λ1,2 and two
reference perfect matchings, M1 on D(G1) and M2 on D(G2), such that for every closed
curve C in C(G1),

(3.10) FAG1 (M1, C) = Λ1,2 FAG2 (M2,Π(C))

where Π : C(G1) → C(G2) is the canonical mapping induced by the transformation from G2

to its minor G1.

In particular, if the partition function on G2 admits a Pfaffian representation then so does
the partition function on G1.

Theorem 3.9 allows here to reduce the class of graphs one has to consider to prove both
necessity and sufficiency of the planarity condition. Incidentally, it also clarifies a point
raised by Fisher long ago[26], related to the fact that a planar graph has a non planar
dart graph if some of its vertices are incident with more than three edges. In such a case,
the related dimer problem is no longer solvable and two approaches have been proposed: In
Kasteleyn approach [8], one keeps the original graph, and has to argue that the multiplicities
encountered are exactly compensated by some sign rule; In Fisher’s approach, one deals with
a larger, 3−regular graph so that the dart graph is also planar, and reduces later to the
original graph. A consequence of Theorem 3.9 is that both approaches are not only always
simultaneously possible, but that Fisher’s planar dimer construction implies Kasteleyn’s sign
rule.

In the course of the proof of Theorem 3.1, we use Theorem 3.9 twice. On one hand, the
proof that planarity is a necessary condition is reduced to an application of Kuratowski’s
planarity criterion [27], starting from the following constatation:

Proposition 3.11. The partition functions on the complete bipartite graph K3,3 and on the
complete graph K5 have no Pfaffian representation.
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On the other hand, Theorem 3.9 and the following lemma allows to arbitrarily restrict the
proof of sufficiency to 4-regular graphs,

Lemma 3.12. Given a 2-connected simple graph G embedded in some surface S, there exists
a 2-connected 4-regular simple graph G̃ embeddable in the same surface such that G 4 G̃.

Note that 4-regular graphs are just chosen for convenience. We are left with the following

Proposition 3.13. Let G = (V,E) be a 4-regular, 2-connected simple graph with no loops.
If G is planar, then its partition function admits a Pfaffian representation.

Proof of Proposition 3.13 consists in two parts. First, reduction to 4-regular graphs helps
us to write Lemma 2.34 as a set of algebraic equations in the incidence matrix entries,
depending on the choice of the cycle basis. We prove next that McLane criterion ( Theorem
1.1 ) is just what is needed to pick a cycle basis so that these algebraic equations do have a
consistent solution. First, we introduce some notations.

Let G = (V,E) be as in Proposition 3.13. The vertex set of its dart graph D(G) is

(3.14) VD(G) =
{

(v, e), v ∈ V, e ∈ E(v)
}

where E(v) ⊂ E is the set of four edges at vertex v ∈ V . We suppose that the sets V and
E(v) for all v ∈ V have been ordered in some arbitrary way and for all v ∈ V we denote by
ekv the kth element of E(v). On VD(G), we consider the induced lexicographic order.

(3.15) (v, e) ≤ (v′, e′)⇐⇒











v < v′

or

v = v′ and e ≤ e′
∀((v, e), (v′, e′)) ∈ VD(G)× VD(G)

Since there is an even number of edge at each vertex, there exists a perfect matchingM0 on
D(G) such that M0 ∩E = ∅. Actually there are 3|V | such matchings and we take arbitrarily
the following one as our reference perfect matching,

(3.16) M0 =
⋃

v∈V

{{

(v, e1v), (v, e
2
v)
}

,
{

(v, e3v), (v, e
4
v)
}}

We construct an incidence matrix AG of order |VD(G)| = 4|V |.

(3.17) AG =
(

AG
(v,e),(w,f)

)

(e,f)∈E(v)×E(w)
(v,w)∈V ×V

By Definition 2.22, entries of AG are zero except those corresponding to an edge in D(G).
If the edge is in EE

D (G) (respectively in EV
D (G)), e = f (respectively v = w), the coefficent

AG
(v,e),(w,f) is termed an “edge entry” (respectively a “site entry”).

Recalling that AG is an antisymmetric matrix, we rename all its edge and site entries as
follows. For every edge e in E with endvertices v and w such that v < w, we write

(3.18) be = AG
(v,e),(w,e)

while for every vertex v ∈ V and every permutation σ on E(v), we define
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Sv(σ) = AG
(v,σ(e1v )),(v,σ(e

2
v ))

S̄v(σ) = AG
(v,σ(e3v )),(v,σ(e

4
v ))

Tv(σ) = AG
(v,σ(e1v )),(v,σ(e

3
v ))

T̄v(σ) = AG
(v,σ(e2v )),(v,σ(e

4
v ))

(3.19)

Uv(σ) = AG
(v,σ(e1v )),(v,σ(e

4
v ))

Ūv(σ) = AG
(v,σ(e2v )),(v,σ(e

3
v ))

When σ is the identity, we simplify the notations further as

sv = Sv(1) tv = Tv(1) uv = Uv(1)

s̄v = S̄v(1) t̄v = T̄v(1) ūv = Ūv(1)(3.20)

Now let γ = (Vγ, Eγ) be a cycle of length rγ on G. We consider a cyclic order on both its
edge and vertex sets,

Vγ = (vγi )i∈{1,··· ,rγ}(3.21)

Eγ = (eγi )i∈{1,··· ,rγ}(3.22)

where the indices are defined modulo rγ so that vγi is incident with eγi−1and eγi for all i ∈
{1, · · · , rγ}.

We want to relate both the order on VD(G) and the order along γ and thus introduce
γ-related notations.

For all i in {1, · · · , rγ}, we rename the edge entry in AG associated to eγi as,

(3.23) Bγ
i = A(vγi ,e

γ
i ),(v

γ
i+1,e

γ
i )

Note that Bγ
i is equal to either +beγi or −beγi according to whether γ goes through edge eγi

compatibly or not with the order on VD(G). In order to rename the site entries along γ, we
consider the following

Lemma 3.24. Let γ a cycle of length rγ ordered as above. For every i ∈ {1, · · · , rγ}, there
exists a unique permutation σγ

i on E(vγi ) with positive signature such that,

eγi−1 = σγ
i (e

1
v
γ
i
)(3.25)

eγi = σγ
i (e

4
v
γ
i
)(3.26)

The effect of the σγ
i ’s is to reorder the edges on each site visited by the cycle, so that it

enters a site by the first edge and leave by the forth. When considering a given cycle γ, we
also simplify notations (3.19) as

Sγ
i = Sv

γ
i
(σγ

i ) T γ
i = Tvγi (σ

γ
i ) Uγ

i = Uv
γ
i
(σγ

i )

S̄γ
i = S̄v

γ
i
(σγ

i ) T̄ γ
i = T̄vγi (σ

γ
i ) Ūγ

i = Ūv
γ
i
(σγ

i )(3.27)

The relations between notations (3.20) and (3.27) depend on the actual value of σγ
i among

twelve possible realizations and are listed in Table 1.

Using these notations, we can state the following proposition:



14 THIERRY GOBRON

σγ
i (e

1
v) σ

γ
i (e

2
v) σ

γ
i (e

3
v) σ

γ
i (e

4
v) Sγ

i S̄γ
i T γ

i T̄ γ
i Uγ

i Ūγ
i

e1v e2v e3v e4v sv s̄v tv t̄v uv ūv

e2v e1v e4v e3v −sv −s̄v −t̄v −tv ūv uv

e3v e4v e1v e2v s̄v sv −tv −t̄v −ūv −uv

e4v e3v e2v e1v −s̄v −sv t̄v tv −uv −ūv

e1v e3v e4v e2v tv t̄v uv ūv sv s̄v

e3v e1v e2v e4v −tv −t̄v −ūv −uv s̄v sv

e4v e2v e1v e3v t̄v tv −uv −ūv −s̄v −sv

e2v e4v e3v e1v −t̄v −tv ūv uv −sv −s̄v

e1v e4v e2v e3v uv ūv sv s̄v tv t̄v

e4v e1v e3v e2v −uv −ūv −s̄v −sv t̄v tv

e2v e3v e1v e4v ūv uv −sv −s̄v −t̄v −tv

e3v e2v e4v e1v −ūv −uv s̄v sv −tv −t̄v

Table 1. Correspondence between the 6 site entries in the upper triangular
part of the incidence matrix for a given vertex v (Equation (3.20)), and the new
names (Equation (3.27)) after reordering of E(v) = {e1v, e

2
v, e

3
v, e

4
v} according to

a cycle γ passing through v (= vγi for some index i). σγ
i is the even permutation

on E(v) such that γ enters v through edge σγ
i (e

1
v), and leaves it through σγ

i (e
4
v)

(Lemma 3.24).

Proposition 3.28. Let γ a cycle on G of length rγ and notations as above. If the entries
of the incidence matrix AG associated to elements of γ have non zero values and verify the
following set of equations:

Sγ
i S̄

γ
i + T γ

i T̄
γ
i = 0 ∀i ∈ {1, · · · , rγ}(3.29)

(

Bγ
i

)2
= −

Uγ
i T̄

γ
i

Sγ
i

Uγ
i+1T

γ
i+1

S̄γ
i+1

∀i ∈ {1, · · · , rγ}(3.30)

rγ
∏

i=1

Bγ
i = −

rγ
∏

i=1

Uγ
i(3.31)

Then, for any perfect matching M0 such that M0 ∩ E = ∅, the contribution of every closed
curve in C(G) is invariant under addition of γ,

(3.32) FAG(M0, C) = FAG(M0, C△γ) ∀C ∈ C(G).

Proposition 3.28 will be proven in Section 5, where we introduce a representation in terms of
a Grassmann algebra. Equations (3.29)–(3.31) can be obtained by considering all local con-
figurations around γ with an even number of edges at each site. Some of these configurations
may not correspond to an actual element C ∈ C(G), for instance when a cut along γ splits
the graph G into two pieces, so that some of these equations are possibly not necessary. The
set of equations (3.29)–(3.31) always admits a nowhere zero solution, when considering a
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single cycle. However, compatibility of these conditions for an arbitrary collection of cycles
is not granted, even for planar graphs.

Here, MacLane’s planarity criterion comes into play as it provides us with a cycle basis
B0 with specific properties. In particular, elements of such a basis cannot form a cluster (a
double cover of a proper subset of E(v), at some vertex v ∈ V ) [20]. Then the absence of
clusters with 3 edges implies compatibility of equations (3.29) for all γ ∈ B0 and all v ∈ V .
Similarly, supposing that site entries have been chosen so that equations (3.29) hold for all
γ ∈ B0, the absence of clusters with 2 edges implies that edge entries can be chosen so that
equations (3.30) also hold for all γ ∈ B0.

The remaining equations (3.31) are strongly reminding of Kasteleyn’s orientation prescrip-
tion. Note that equations (3.29)–(3.30) are independent on the sign of the edge entries Bγ

i ,
and that once they are solved, one has

(3.33)
r
∏

i=1

(

Bγ
i

)2
=

r
∏

i=1

(

Uγ
i

)2

so that equation (3.31) just amounts to choose independently the sign of the product of edge
entries along γ. Existence of a solution to the equations (3.31) for all γ ∈ B0 just derives
from independence of the elements in that basis.

Proposition 3.28 implies that conditions of Lemma 2.34 are verified for any planar 4-regular
graph, and Proposition 3.13 follows.

We now generalize these results to non planar graphs.

By Theorem 3.1, we already know that a non planar graph G cannot have a cycle basis
such that Equations (3.29)–(3.31) can be solved simultaneously for all its elements. The
strategy we adopt here consists in finding the largest free family of cycles on which these
equations may hold simultaneously and looking at what happens when completing it to a
cycle basis.

Following the generalization to non planar graphs of McLane’s Theorem [20], we say that a
family of cycles on a graph is “sparse” if it contains no cluster, where a cluster is a subfamily
of cycles covering twice a proper subset of E(v), for some vertex v. Just as in the planar case,
Equations (3.29)–(3.31) can be proven to be simultaneously solvable for all cycles forming a
sparse family.

Intuitively, a maximal sparse family of cycles has to be related to the embedding properties
of the graph, but this relation is rather intricate: in a non planar 2-cell embedding, face
boundaries are closed walks but not necessarily cycles and another definition for sparseness
is required [20]. The following lemma together with Theorem 3.9 allows us to bypass this
point:

Lemma 3.34. Let G1 be a 2-connected simple graph embedded in some surface S. There
exists a 4-regular 2-connected graph G2 < G1 embeddable in the same surface S so that all
its face boundaries are cycles.

If the genus of the embedding in S is minimal for G1, it is also minimal for G2 since
G2 < G1. When considering such an embedding for G2 in S, the family of face boundaries
is a collection of cycles and a sparse family of smallest codimension in C(G2). Theorem 3.9
allows then to transfer related results back to G1 4 G2, even if G1 has no strong embedding
of its own genus.
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Hence, we consider a 4-regular graph G = (V,E) with a strong 2-cell embedding in some
surface S. We denote by F0(G) the set of cycles which are face boundaries in that embedding
and by F∗

0 (G) a maximal free subfamily, obtained by dropping out one element of F0(G).

Clearly F∗
0 (G) is a sparse familly and as in the planar case, this property leads to the proof

that the algebraic equations (3.29)–(3.30) can be simultaneously solved for all γ ∈ F∗
0 (G).

A non orientable embedding can be described by an embedding scheme, that is a pair (Π, λ)
where Π = (πv)v∈V defines a cyclic ordering of edges at every vertex, and λ : E → {−1, 1}
is a signature on the edge set [30]. Note that the correspondence between embeddings and
embedding schemes is not one to one, and for a graph with |V | vertices there can be as much
as 2|V | embedding schemes describing the same embedding. We prove the following Lemma.

Lemma 3.35. Let G a 4-regular graph with a strong 2-cell embedding in some surface S,
defined up to homeomorphism by the embedding scheme (Π, λ). There exists an incidence
matrix AG with coefficients

AG
(v,e),(w,f) ∈

{

iR if e = f and λ(e) = −1

R otherwise.
for all (v, e), (w, f) ∈ VD(G)(3.36)

and a reference perfect matching M0 as in (3.16) such that

FAG(M0, C) = FAG(M0, C△γ) ∀C ∈ C(G), ∀γ ∈ F∗
0 (G)(3.37)

In particular the coefficients of AG can be chosen in R if and only if the embedding is
orientable.

When the incidence matrix is chosen as in Lemma 3.35, each closed curve C has a weight
in the Pfaffian expansion which depends only on its homology class on S. Proof of Theorem
3.2 uses the fact that for a sufficiently large class of graphs, these weights can be easily
computed. However, the coefficients have to be chosen in a suitable multicomplex algebra
Cn and Lemma 3.35 stated in this larger algebraic context.

The more classical expansions (3.5) and (3.8) are then obtained directly by an algebraic
reduction from Cn to C and R, respectively. This suggests that expression (3.3) does contain
more information than classical expansions, and we believe that it will prove useful to get
new results on non planar Ising model.

4. Proofs

In this section, we present proofs of all results, with the exception of Propositions 3.28
and 2.41 which are considered in the next section.

Proof of Proposition 2.18.

If G = (V,E) is the dart graph of some other graph, says G = D(G′) and G′ = (V ′, E ′),
its edge set is the union of two distinct parts, E = EV ′

D ∪ E
E′

D . Its subgraph (V,EE′

D ) forms
a perfect matching, since by definition, each vertex in V is a dart on G′ and, as such, is
incident with exactly one edge of EE′

D .

Proof of Proposition 2.19.

Let M be a perfect matching on D(G). For each vertex v ∈ V , denote by E(v) the set of
edges at v, and by VD(v) the set of darts at v

(4.1) VD(v) =
{

(v, e), e ∈ E(v)
}
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An edge of M is either in EV
D and have thus its two endpoints in the same cluster VD(v)

for some v ∈ V , or is in EE
D and hits two distinct clusters. Since M is a perfect matching

on D(G), it hits each of its vertices exactly once. Thus for all v ∈ V , the number of edges
in M ∩ EE

D which hit VD(v) has the same parity as |VD(v)|. This number, modulo 2 is
thus independent on the matching. In particular, if M1, M2 are two perfect matchings on
D(G),we have

(4.2) C = (M1△M2) ∩ E
E
D = (M1 ∩ E

E
D )△(M2 ∩ E

E
D)

and for all v ∈ V , C hits VD(v) an even number of times.

Proof of Lemma 2.34

Substituting both Expressions (2.6) and (2.32) in the definition (2.27) and owing to the
algebraic independence of the weights, it is clear that the partition function on G admits a
Pfaffian representation in the sense of definition 2.26 if and only if there exists an incidence
matrix AG a reference perfect matching M0 and a constant Λ 6= 0 such that

(4.3) FAG(M0, C) = Λ ∀C ∈ C(G)

The actual value of constant Λ is irrelevant , so we only need to verify that for some
reference perfect matching, FAG(M0, ·) is non zero and is equal on any two closed curves in
C(G),

(4.4) FAG(M0, C) = FAG(M0, C
′) for all C,C ′ ∈ C(G)

Now (C(G),△) is a vector space and admits a cycle basis, say BG. Therefore the above set
of equations can be reduced to an invariance property under addition of any cycle in that
basis

(4.5) FAG(M0, C) = FAG(M0, C△γ) for all C ∈ C(G) and all g ∈ BG

Equations (4.5) are clearly a subset of Equations (4.4); by chain rule, it is easy to show that
they generate all of them, so that both sets are equivalent.

Proof of Proposition 2.43.

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) such that G1 4 G2. Consider a
given transformation which send G2 on G1, and denote by Ec

2 (respectively Ed
2 ) the set of

contracted (respectively deleted) edges of E2 in that transformation. By construction, each
connected component of (V2, E

c
2) is a tree Tv, which is mapped under contraction to a given

vertex v in G1. Furthermore, the edges in E2 \ (E
c
2 ∪ E

d
2) are in one to one correspondence

with those of E1, which implies that there is also a one to one correspondence between the
set of darts VD(G1) and the subset of VD(G2) defined as

(4.6) K =
{

(v, e) ∈ VD(G2), e ∈ E2 \ (E
c
2 ∪ E

d
2 )}

For all d ∈ VD(G1), we denote by d̃ its image in K and assume that the order on VD(G1)
is induced from the order on VD(G2) through this correspondence.

Let AG2 be an incidence matrix on D(G2) such that AG2
d1,d2

= 0 if either d1 or d2 is incident

with an edge in Ed
2 ; Then, by (2.40), the matrix [AG2 ]K is an antisymmetric matrix of order

|K| = |VD(G1)|, and for every pair of darts (d1, d2) in VD(G1) with d1 < d2, its entries are

(4.7) AK

d̃1,d̃2
= Pf

(

A(K∪{d̃1,d̃2}

)
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where

(4.8) K =
{

(v, e) ∈ VD(G2), e ∈ E
c
2 ∪ E

d
2}

In order to prove that AK is an incidence matrix on D(G1), we have to check that Equation
(2.23) holds for all pairs (d1, d2) ∈ VD(G1). Let us consider a pair of darts (d1, d2) such

that AK

d̃1,d̃2
6= 0. Then in the expansion of the right hand side of (4.7), there is at least one

non zero term which necessarily contains as a factor the term Ad̃1,d̃2
, or a product of terms

Ad̃1,g̃1
Ag̃′1,g̃2

· · ·Ag̃′
k
,d̃2

for some k > 0 where (g̃i, g̃
′
i), 1 ≤ i ≤ k, are pairs of darts associated

to the same edge in Ec
2 (by condition (2.44)).

In the first case, Ad̃1,d̃2
6= 0 implies (d̃1, d̃2) ∈ ED(G2) since A is an antisymmetric incidence

matrix. Hence d̃1 and d̃2 contain the same edge in E2 \ (E
c
2 ∩E

d
2), which implies that d1 and

d2 also contain the same edge in E1.

In the second case, Ad̃1,g̃1
6= 0, Ag̃′1,g̃2

6= 0, · · · , Ag̃′
k
,d̃2
6= 0 imply that each pair of darts,

d̃1 and g̃1, g̃
′
1 and g̃2, · · · , g̃

′
k and d̃2, share the same vertex, respectively. Since (g̃i, g̃

′
i) ∈ E

c
2

for all 1 ≤ i ≤ k, these vertices are in the same connected components of (V2, E
c
2) and thus

shrink to the same vertex of G1 under contraction. Thus d1 and d2 contain the same vertex
in V1.

In both cases, (d1, d2) ∈ ED(G1). A
K is thus an incidence matrix on D(G1).

Proof of Theorem 3.1.

Let G be a planar, 2-connected simple graph. By Lemma 3.12, there exists a planar, 2-
connected, 4-regular graph G̃ < G̃, which partition function admits a Pfaffian representation
by Proposition 3.13. By Theorem 3.9, this property extends to all its minors and in particular
the partition function on G admits a Pfaffian representation.

Let G be a non planar graph. Kuratowski’s planarity criterion [27], one of its minors is
homeomorphic to the complete graph K5 or the complete bipartite graph K3,3. By Proposi-
tion 3.11, the partition function on either of these two graphs has no Pfaffian representation
and by Theorem 3.9, there is also no such Pfaffian representation for the partition function
on G.

Proof of Theorem 3.2.

Let G = (V,E) be a graph of nonorientable genus g̃. We first suppose that G is 4-regular

and construct another 4-regular graph G̃ = (Ṽ , Ẽ) with G̃ 4 G in the following way: we
consider a surface S with g̃ crosscaps and decompose it into g̃+1 domains D0, D1,· · · ,Dg̃ so
that D0 is homeomorphic to a sphere with g̃ holes and each of the Dk, k > 0 is homeomorphic
to a Moebius strip. We draw G on S so that all its vertices are in D0. On every domain
Dk, k > 0 , we draw two nested non intersecting simple curves around the crosscap. We
call G̃ the 4-regular graph which representation on S results from the superposition of the
representation of G and the 2g̃ closed curves, adding each intersection point to the vertex
set , and associating each line segment to an edge.

Finally, we possibly use Lemma 3.34 and modify G̃ accordingly so that the all face bound-
aries of G̃ on S are cycles. For every k ∈ {1, · · · , g̃}, we call G̃k = (Ṽk, Ẽk) the subgraph of
G̃ with vertex set the subset of Ṽ represented in Dk and edge set the set of edges in Ẽ with
both endvertices in Ṽk.



PFAFFIAN REPRESENTATIONS 19

Note that in this embedding every edge of G̃ goes through at most one crosscap. We
thus consider an embedding scheme (Π, λ) which describes the embedding of G̃ on S so that
λ(e) = −1 for every edge e going through a crosscap and λ(e) = +1 otherwise. By Lemma

3.35, there exists an incidence matrix AG̃ with coefficients as in (3.36), such that equations

(3.29)–(3.31) hold for all cycles γ ∈ F∗
0 (G̃).

We introduce a multicomplex algebra Cg̃ with generators i1, · · · , ig̃ such that i2α = −1 for

all α ∈ {1, · · · , g̃} and iαiβ = iβiα for all α, β ∈ {1, · · · , g̃}. We construct a new matrix ÃG̃

with coefficients in Cg̃, so that for every pair of darts (v, e), (w, f) in VD(G̃)

ÃG̃
(v,e),(w,f) =

{

ikℑ
(

AG̃
(v,e),(w,f)

)

if e = f ∈ G̃k and λ(e) = −1

AG̃
(v,e),(w,f) otherwise.

(4.9)

where ℑ(·) denotes the imaginary part. By construction, every cycle in F∗
0 (G̃) has its support

in one of the subgraphs G̃k, or has all edges with +1 signature.

Thus for every cycle γ ∈ F∗
0 (G̃), the equations (3.29)–(3.31) contain at most one generator

ik, so that they hold for coefficients of ÃG̃ as soon as they hold for those of AG̃. Thus ÃG̃ is
also an incidence matrix (with coefficients in Cg̃ ) such that equations (3.29)–(3.31) hold for

all cycles γ ∈ F∗
0 (G̃).

The set of closed curves on graph G̃ has 2g̃ homology classes and any two elements in

the same homology class are given the same contribution in the Pfaffian expansion of ÃG̃.
We now construct a particular element in each homology class which contribution can be
computed.

Let us denote by CR(G̃) ⊂ C(G̃) the set of closed curves with support in ∪1≤k≤g̃Ẽk. Given

a reference perfect matching M0 as in (3.16), we also denote by MR(G̃) the set of perfect

matchings inM(G̃) which have their image in CR(G̃).

(4.10) MR(G̃) = {M ∈M(G̃),ΦM0(M) ∈ CR(G̃)}

We also define the following subsets of darts

D0 =
{

(v, e) ∈ VD(G̃), v ∈ Ṽ \ ∪1≤k≤g̃Ṽk
}

(4.11)

and for all k ∈ {1, · · · , k̃}

Dk =
{

(v, e) ∈ VD(G̃), v ∈ Ṽk
}

(4.12)

Obviously the chosen reference perfect matching has its support in ∪0≤k≤g̃Dk ×Dk and thus

also every perfect matching in MR(G̃). Now the sets of dimers Dk × Dk, 0 ≤ k ≤ g̃ have
disjoint support, so that MR(G̃) is a direct product of sets of perfect matchings on each
component.

Now define

f0 = F
ÃG̃(M0, γ0) for some γ0 ∈ F

∗
0 (G̃)

fk = F
ÃG̃(M0, γ1) for some γk1 ∈ C(G̃k) \ F

∗
0 (G̃)

Note that the value of f0 is independent of the choice of γ0 ∈ F
∗
0 (G̃), and C(G̃k) \ F

∗
0 (G̃) is

not empty ( G̃k is not planar) and the value of f1 is independent on the choice of γk1 in that
set.
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The subgraph G̃k contains K5 as a minor (which can be formed from the two closed
lines around the crosscap and two edges of G passing through the crosscap and their 8
crossing points). Thus by Theorem 3.9, there exists an incidence matrix onK5 which Pfaffian
expansion has weights proportional to f0 and fk. In particular they verify Equation (4.62)
which is homogeneous. Thus weights f0 and fk verify the same equation, namely,

fkf
3
0 = −f 3

kf0(4.13)

Since γk1 passes through the crosscap an odd number of times, fk is necessarily proportional
to Ik, which implies then

fk = ±ikf0(4.14)

For conveniency, we possibly change the sign of the coefficients of the matrix ÃG̃ which
are proportional to ik (Indeed, for every cycle γ ∈ F∗

0 (G̃), equations (3.29)–(3.31) keep
unchanged in that transformation), so that we can fix those signs to be

fk = ikf0(4.15)

Now consider a closed curve C ∈ CR(G̃). Denote by Ck the closed curve in ∈ C(G̃) with
support in G̃k which coincide with C on G̃k and by C0 the null curve. By construction, we
have

F
ÃG̃(M0, C)

(

F
ÃG̃(M0, C0)

)g̃−1
=

g̃
∏

k=1

F
ÃG̃(M0, Ck)(4.16)

and thus

F
ÃG̃(M0, C) = f0

g̃
∏

k=1

(ik)
ǫk(4.17)

where

ǫk =

{

+1 if C|G̃k
has nonorientable genus1

0 otherwise
(4.18)

where C|G̃k
is the restriction of C on G̃k.

Setting

Λ =
1

f0

g̃
∏

k=1

(1− ik)(4.19)

We get, for every curve C ∈ C(G̃),

Re
[

ΛF
ÃG̃(M0, C)

]

= 1(4.20)

The Theorem is proven.

Proof of Corollary 3.4.

Let G = (V,E) be a graph of nonorientable genus g̃. By Theorem 3.2, there is an incidence
matrix AG on D(G) with coefficients in Cg̃, a constant Λ ∈ Cg̃ and a reference perfect
matching M0 such that
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(4.21) ZG(w) = w(M0 ∩ E
E
D (G)) Re

[

Λ Pf
(

AG,M0(w)
)]

Now there are 2g̃ distincts algebra homomorphisms H̃k : Cg̃ → C, k ∈ {1, · · · , 2g̃} such

that for all j ∈ {1, · · · , g̃}, H̃k(ij) ∈ {−i,+i}, and we have for every element w ∈ C},

Re(w) =
1

2g̃

2g̃
∑

k=1

H̃k(w)(4.22)

Here we set

Λk =
1

2g̃
H̃k(Λ)(4.23)

and for all (d1, d2) ∈ VD(G)× VD(G)
(

AG
k

)

d1,d2
= H̃k

(

AG
d1,d2

)

(4.24)

and we get

ZG(w) = w(M0 ∩ E
E
D(G))

2g̃
∑

k=1

Λk Pf
(

AG,M0

k (w)
)

(4.25)

Proof of Corollary 3.7.

Let G = (V,E) a graph of orientable genus g. The surface in which it can be minimally
embedded can be represented as a (fundamental) polygon with 4g sides to be identified
pairwise. Conventionally, the polygon can be represented as a succession of translations
along the sides, round the polygon, as

Pg = A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 · · ·AgBgA
−1
g B−1

g(4.26)

where A1, B1, · · · , B
−1
g are the labels of the sides, and the index −1 indicates an orientation

opposite to the previous one.

On the other hand, a non orientable surface with genus g̃ can be represented as a funda-
mental polygon with 2g̃ sides, in the form

P̃g̃ = C0C0C1C1 · · ·Cg̃−1Cg̃−1(4.27)

where each side Ck is followed twice in the same direction.

Now we consider (4.26) as an element of the free group F2g generated by the 2g generators
A1, B1,· · · , Ag, Bg. and we show hereafter that it can be set in the form (4.27) with
g̃ = 2g + 1.

We define S0 = T0 = 1F2g and recursively for all 1 ≤ k ≤ g,

Sk = Sk−1AkBkA
−1
k B−1

k

Tk = BkAkTk−1(4.28)
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For every 1 ≤ k ≤ g,we write

Uk = Sk−1AkBkTk−1

Vk = T−1
k−1B

−1
k A−1

k S−1
k−1T

−1
k−1BkTk−1(4.29)

Wk = T−1
k−1B

−1
k Tk−1Sk−1Tk−1

From these definitions, it follows that ,

U1

(

V1V1
)(

W1W1

)

= A−1
1 B−1

1 = T0A
−1
1 B−1

1(4.30)

and for all k ≥ 2,

Uk

(

VkVk
)(

WkWk

)

U−1
k−1 = T−1

k−1

(

A−1
k B−1

k

)(

Bk−1Ak−1

)

Tk−2(4.31)

Using these relations, we compute
(

UgUg

)(

VgVg
)(

WgWg

)

· · ·
(

VkVk
)(

WkWk

)

· · ·
(

V1V1
)(

W1W1

)

=
(

Sg−1AgBgTg−1

)(

UgVgVgWgWgU
−1
g−1

)

· · ·

× · · ·
(

UkVkVkWkWkU
−1
k−1

)

· · ·
(

U1V1V1W1W1

)

=
(

Sg−1AgBgTg−1

)(

T−1
g−1A

−1
g B−1

g Ag−1Bg−1Tg−2

)

· · ·

× · · ·
(

T−1
k−1A

−1
k B−1

k Ak−1Bk−1Tk−2

)

· · ·
(

A−1
1 B−1

1

)

= Sg−1AgBgA
−1
g B−1

g(4.32)

Which gives the identity
(

UgUg

)(

VgVg
)(

WgWg

)

· · ·
(

VkVk
)(

WkWk

)

· · ·
(

V1V1
)(

W1W1

)

=
(

A1B1A
−1
1 B−1

1

)(

A2B2A
−1
2 B−1

2

)

· · ·
(

AgBgA
−1
g B−1

g

)

(4.33)

In terms of elements of the free group F2g, we have thus proven an identity between Pg

and P̃g̃, with g̃ = 2g + 1, with the following choice for the factors Cj , 0 ≤ j ≤ 2g,

C0 = Ug(4.34)

and for all 0 ≤ k ≤ g − 1,

C2k+1 = Vg−k(4.35)

C2k+2 = Wg−k(4.36)

This decomposition proves directly that a graph of orientable genus g can be embedded in
a nonorientable surface with 2g + 1 crosscaps and incenditally leads to a proof of inequality
(3.6), longer but distinct from the original one [31]. In Figure 3, we give an example of
transformation of a fundamental domain for a surface of orientable genus 1 into that of a
surface of nonorientable genus 3, according to Identity (4.33). In Figure 4, we show the
embedding of a graph of orientable genus 1 in a nonorientable surface with three crosscaps
which results from decomposition (4.34)–(4.35), starting from an orientable embedding.

Here we are interested in the explicit realization of such a nonorientable embedding. We
introduce a multicomplex algebra C2g+1 with generators i0, i1, i2g, so that i2k = −1 and
ikik′ = ik′ik. We now rely on the construction given in the proof of Theorem 3.2. We attach
generator ik to the crosscap [CkCk]. Considering again a graph G̃ < G such that an edge

crosses at most one crosscap, we recall that the edge entries in the incidence matrix AG̃
(v,e),(w,e)

are linear in ik if and only if edge e crosses the kth crosscap. By Theorem 3.9, the induced
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B

B
A

B

B B

A

A

B

A

B

A

Figure 3. Left: Fundamental polygon for a surface of genus one, described
as a single curve closing at the point marked with a •. Right: transformation
of the same curve using decomposition (4.35). The resulting curve now passes
three times at the marked point; After identification of these three points, the
curve splits into three lobes, each having the structure of a crosscap.

incidence matrix for the original graph G gets a similar property: an edge on G corresponds
to a simple path in G̃ and its edge entry in AG is proportional to the product of all edge

entries in AG̃ defined on this path. Accordingly, an edge entry in AG gets a factor ik each

times the edge crosses the kth crosscap, and thus is linear in ik if and only if edge e crosses

the kth crosscap an odd number of times.

Now starting from an orientable embedding of G, we have to read off from expressions
(4.34)–(4.35), which crosscaps are crossed oddwise by an edge in G which was originally
crossing (once )the boundary of the fundamental domain through side Ak (respectively Bk),
for all 1 ≤ k ≤ g. For this purpose, we have thus to determine for each Cj , 0 ≤ j ≤ 2g, the
set of generators O(Cj) which occur an odd number of times. We have

O(C0) =
{

Aj , Bj; 1 ≤ j ≤ g
}

(4.37)

and for all k ∈ {0, · · · , g − 1},

O(C2k+1) =
{

Aj , Bj; 1 ≤ j ≤ g − k − 1
}

∪
{

Ag−k

}

O(C2k+2) =
{

Aj , Bj; 1 ≤ j ≤ g − k − 1
}

∪
{

Bg−k

}

It is easy to see that each generator appears in an even number of sets. Thus, for any
edge crossing the boundary of the fundamental domain, the corresponding edge entry gets
proportional to the product of an even number of generators in C2g+1. Each matrix entry can
be thus considered as an element of a subalgebra with generators ek = i0ik, with ekek′ = ek′ek
and e2k = 1.
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1

B BA

A

C

C

C22 C

C

C 0

0

1

Figure 4. Left: Embedding on the torus of a graph of orientable genus 1.
Right: Derived embedding in a surface with tree crosscaps, with C0 = AB,
C1 = B−1A−1B, C2 = B−1. Multiple occurences of the same boundary are
identified in two ways: inside each crosscap, opposite boundaries are identified
(dashed lines); outside crosscaps, the paired new boundaries are joined by solid
lines. By construction, edges do not cross outside crosscaps. Note that every
edge goes through a crosscap an even number of times.

Simultaneously, the constant Λ defined in Equation (4.19) can be replaced by an element
of the subalgebra without changing the real part of ΛPf(AG,M0)(w). Namely, we set

Λ =
1

f0

(

∑

S⊂{1,··· ,2g}
|S|even

(−1)
|S|
2

∏

j∈S

ej +
∑

S⊂{1,··· ,2g}
|S|odd

(−1)
|S|−1

2

∏

j∈S

ej
)

(4.38)

We follow the same way as in the proof of Corollary 3.7. We denote by R2g the real ring
generated by {ej}1≤j≤2g. There are 22g distincts algebra homomorphisms Hk : R2g → R,
k ∈ {1, · · · , 22g} such that for all j ∈ {1, · · · , 2g}, Hk(ej) ∈ {−1,+1}, and we have for every
element w ∈ C},

Re(w) =
1

22g

22g
∑

k=1

Hk(w)(4.39)
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Here we set

Λk =
1

2g̃
Hk(Λ)(4.40)

where Λ is defined by Equation (4.38) and for all (d1, d2) ∈ VD(G)× VD(G)
(

AG
k

)

d1,d2
= Hk

(

AG
d1,d2

)

(4.41)

Finally, we get

ZG(w) = w(M0 ∩ E
E
D(G))

22g
∑

k=1

Λk Pf
(

AG,M0

k (w)
)

(4.42)

Proof of Theorem 3.9.

We use the same notations as in the proof of Proposition 2.43. We first prove that if
G1 4 G2, there is an isomorphism between C(G1) and the subset of closed curves on C(G2)
not containing deleted edges,

(4.43) Č(G2) = {C ∈ C(G2), C ∩ E
d
2 = ∅}

Under contraction, vertices connected through contracted edges are identified to a single
vertex, which degree is thus equal modulo 2 to the sum of the degrees of the initial vertices.
In particular, closed curves are sent to closed curves, and this allows to define a mapping π0
from Č(G2) to C(G1), which is surjective by hypothesis since G1 4 G2. The mapping is also
injective: if two elements in Č have the same image in C(G1), they have the same intersection
with E2 \ (E

c
2∪E

d
2 ), so that their symmetric difference has its support in Ec

2 and thus vanish,
since Ec

2 contains no cycle. This defines a canonical injective mapping Π : C(G1) → C(G2),
such that for all C ∈ C(G1),

(4.44) Π(C) = π−1
0 (C)

Let AG2 be an incidence matrix on D(G2). We first construct a modified incidence matrix
ǍG2 as follows. For every pair of darts d1, d2 in VD(G2), let d1 = (v1, e1) and d2 = (v2, e2);
we set

(4.45) ǍG2

d1,d2
=

{

0 if v1 = v2 and {e1, e2} ∩ E
d
2 6= ∅

AG2
d1,d2

otherwise

Hereafter we take M2 = EE
D (G2) ∼= E2 as the reference perfect matching on D(G2) and

consider a closed curve C ∈ Č(G2). Thus C ∩E
d
2 = ∅ and Equation (2.20) implies that every

perfect matching M in φ−1
M2

(C) contains all pairs of darts {(v, e), (v′, e)} in ED(G2) such that

e ∈ Ed
2 . In particular, ǍG2 and AG2 coincide on every element of M and from Definition

(2.33), we get

(4.46) FǍG2 (M2, C) = FAG2 (M2, C)

for all C ∈ Č(G2).

Conversely, consider a closed curve C ∈ C(G2) \ Č(G2). By definition, there exists a pair
of darts d, d′ in VD(G2) with d = (v, e), d′ = (v′, e) and e ∈ C ∩ Ed

2 . Since {d, d′} ∈ M2,
Equation (2.20), implies that for every perfect matching M in φ−1

M2
(C), {d, d′} 6∈M . Hence,
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for every such M , there is d′′ = (v, e′′) with {d, d′′} ∈ M and by (4.45), ǍG2

d,d′′ = 0 . The

contribution of every perfect matching M in φ−1
M0

(C) is thus zero and

(4.47) FǍG2 (M2, C) = 0

for all C ∈ C(G2) \ Č(G2).

We now relate the terms in the Pfaffian expansion of ǍG2 to the corresponding terms in
the Pfaffian expansion of the incidence matrix on G1 constructed using Proposition 2.43.
First, for every weight function w : E1 → R+, we define its extension w̃ on E2, as

(4.48) w̃(e) =

{

w(ẽ) if e ∈ E2 \ (E
c
2 ∪ E

d
2)

1 if e ∈ Ec
2 ∪ E

d
2

where ẽ is the image in E1 of edge e in E2 \ (E
c
2 ∪ E

d
2 ).

Let Ǧ = (V̌ , Ě) be the subgraph of G2 with edge set Ě = Ec
2 ∪ E

d
2 , and vertex set V̌ the

set of vertices of G2 incident with some edge in Ě. The set of darts on Ǧ is the set K defined
in Equation (4.8). By construction there is no closed curve on Ǧ except the null one and
those with a non empty intersection with Ed

E. Since the arguments used to get equations
(4.46)–(4.47) apply equally to Ǧ, the nonzero terms in the expansion of Pf

(

[ǍG2,M0(w̃)]K
)

are associated to closed curves with no edge in Ed. Thus only the set of matchings associated
to the null curve contributes, and it has only one element, M2|Ě . More precisely, for every
weight function w on E1, we have

(4.49) Pf
(

[ǍG2,M0(w̃)]K
)

= ±1 6= 0

which is thus independent on w.

The Pfaffian reduction formula 2.41 reads here

(4.50) Pf
(

[ǍG2,M0(w̃)]K
)

=
(

Pf
(

[ǍG2,M0(w̃)]K
)

)(n−p−1)

× Pf(ǍG2,M0(w̃))

where 2n = |VD(G2)| and p = |E
c
2 ∪ E

d
2 |.

By Proposition 2.43 , we already know that [ǍG2 ]K is an incidence matrix on D(G1). We

claim that the matrix [ǍG2,M0(w̃)]K is that the weighted incidence matrix associated to it
on D(G1) for the weight function w and reference perfect matching M1 = EE

D (G1) ∼= E1.
Therefore expanding both sides in equation (4.50), for a generic weight function w on E1,
and identifying terms on both sides using Equation (2.33), one gets

F[ǍG2 ]K(M1, C) = Λ1,2FǍG2 (M2,Π(C))

= Λ1,2FAG2 (M2,Π(C))(4.51)

for all C ∈ C(G1), with Λ1,2 = ±1 by Equation (4.49) and Π is the canonical mapping from
C(G1) onto Č(G2).

Suppose now that the partition function on G2 admits a Pfaffian representation. Thus
by Lemma 2.34, there exists an incidence matrix AG2 on D(G2) such that FǍG2 (M2, ·) is
constant and different from zero on Č(G2). By (4.51) and (4.49), F[ǍG2 ]K (M1, ·) is also

constant and different from zero on C(G1). Using again Lemma 2.34, this implies that the
partition function on G1 also admits a Pfaffian representation.

In order to conclude the proof, we have to prove the claim.
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Given our choice of reference perfect matching, the characterization (2.25) reduces to the
identity

(4.52) [ǍG2,M0(w̃)]Kd1,d2 = w−1({d1, d2})[Ǎ
G2 ]Kd1,d2

which has to be checked for every pair of darts d1, d2 with a common edge in E2 \ (E
c
2 ∪E

d
2).

Let d1 = (v1, e), d2 = (v2, e) be such a pair of darts. The graph Ǧe = (V̌ ∪{v1, v2}, Ě∪{e})
is again a subgraph of G2, and every closed curve on Ǧe has either one edge in E

c
2 or has no

edge. We have

(4.53) [ǍG2,M0(w̃)]Kd1,d2 = Pf([ǍG2,M0(w̃)]K∪{d1,d2})

and the expansion of the Pfaffian on the right hand side thus contains only one term, corre-
sponding to the restriction of the reference perfect matching M0 on D(Ǧe). In particular,we
have

Pf([ǍG2,M0(w̃)]K∪{d1,d2}) =
(

∏

e′∈Ěe

w̃−1(e′)
)

Pf([ǍG2 ]K∪{d1,d2})

= w−1(ẽ) Pf([ǍG2 ]K∪{d1,d2})

= w−1(ẽ) [ǍG2]Kd1,d2(4.54)

Thus Equation (4.52) holds. The theorem is proven.

Proof of Proposition 3.11.

Consider first the complete bipartite graph K3,3. Since it is 3-regular, its dart graph
D(K3,3) is also 3-regular and there is as many perfect matchings on D(K3,3) as there are
closed curves on K3,3. Thus given a reference perfect matchingM0, the mapping φM0 defined
in Equation (2.20) is one to one.

We label the vertices and edges of K3,3 by letters in {a, b, c, d, e, f} and numbers in
{1, · · · , 9}, respectively, as in Figure 5 and if vertex v is incident with edge k, we use the
short hand notation vk to denote the dart (v, k).

We consider two sets of cycles on K3,3, S = {γ1, γ2, γ3} and S
′ = {γ′1, γ

′
2, γ

′
3}, where

γ1 = {a, 1, d, 4, b, 6, f, 9, c, 8, e, 2}

γ2 = {a, 1, d, 7, c, 9, f, 3}(4.55)

γ3 = {b, 4, d, 7, c, 8, e, 5}

and

γ′1 = {a, 1, d, 4, b, 5, e, 8, c, 9, f, 3}

γ′2 = {a, 1, d, 7, c, 8, e, 2}(4.56)

γ′3 = {b, 4, d, 7, c, 9, f, 6}

The main property of these two sets is that any subchain of length 4 (a succession of
two vertices and two edges in a cycle) appear in both sets with the same multiplicity. For
instance the subchain (d, 4, b, 6) appears both in γ1 and γ′3. Now, drawing simultaneously
all cycles in a set on the same surface, slightly shifting each drawing, results in a figure as
depicted in Figure 6 with possibly some crossings between the lines of different cycles, and
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c
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a3

1a2a

e

b

Figure 5. Representation of graphK3,3 in the projective plane (Left) and its
dart graph (Right). Vertices and edges are labelled with letters and numbers,
as used in text; darts are named accordingly.

the number of crossings depends on the surface and the way the cycles are drawn. However,
when drawing the two sets S and S ′ on two copies of the same surface, the parity of the
number of crossings always differs in both drawings (Figure 6).

Figure 6. The two sets of cycles S (4.55), and S ′ (4.56) are drawn using
the representation of K3,3 shown in Figure 5. Both sets have locally the same
configurations but parity of the numbers of crossings differ.

This property transfers to the perfects matchings on D(K3,3) in the following way: We
take for instance EE

D (K3,3) as reference perfect matching, that is, we set

M0 = {{a1, d1}, {a2, e2}, {a3, f3}, {b4, d4},

{b5, e5}, {b6, f6}, {c7, d7}, {c8, e8}, {c9, f9}}(4.57)
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so that the two sets of cycles S and S ′ are associated to two sets of perfect matchings,
SM = {M1,M2,M3} and S

′
M = {M ′

1,M
′
2,M

′
3}, respectively, where

M1 = {{a3, f3}, {b5, e5}, {c7, d7}, {a1, a2}, {b4, b6}, {c8, c9}, {d1, d4}, {e2, e8}, {f6, f9}}

M2 = {{a2, e2}, {b4, d4}, {b5, e5}, {b6, f6}, {c8, e8}, {a1, a3}, {c7, c8}, {d1, d7}, {f3, f9}}

M3 = {{a1, d1}, {a2, e2}, {a3, f3}, {b6, f6}, {c9, f9}, {b4, b5}, {c7, c9}, {d4, d7}, {e5, e8}}

and

M ′
1 = {{a2, e2}, {b6, f6}, {c7, d7}, {a1, a3}, {b4, b5}, {c8, c9}, {d1, d4}, {e5, e8}, {f3, f9}}

M ′
2 = {{a3, f3}, {b4, d4}, {b5, e5}, {b6, f6}, {c9, f9}, {a1, a2}, {c7, c8}, {d1, d7}, {e2, e8}}

M ′
3 = {{a1, d1}, {a2, e2}, {a3, f3}, {b5, e5}, {c8, e8}, {b4, b6}, {c7, c9}, {d4, d7}, {f6, f9}}

As a consequence of the properties of sets S and S ′, here each dimer appears in both sets
SM and S ′

M with the same multiplicity.

Let A be an arbitrary antisymmetric incidence matrix on D(K3,3). The contributions of
the cycles in S and S ′ to the Pfaffian expansion of A (equation (2.33) ) are related by

(4.58)
3
∏

i=1

FA(M0, γi) = −
3
∏

i=1

FA(M0, γ
′
i)

This relation derives from the properties of the two sets S and S ′. It can also be seen also as
a property of the perfect matchings in SM and S ′

M alone and any other choice of reference
perfect matching would define two equivalent sets of cycles through equation (2.37). Thus
for every antisymmetric incidence matrix on D(K3,3) and every reference perfect matching
there exist two sets of closed curves such that relation (4.58) holds. By Lemma 2.34, the
partition function on K3,3 has no Pfaffian representation.

The proof for the complete graph K5 is similar.

We label the vertices and edges of K5 by letters in {a, b, c, d, e} and numbers in {0, · · · , 9},
respectively, as in Figure 7 and we denote the dart (v, k) by vk. K5 is 4-regular so that the
mapping (2.20) is not one to one: in fact K5 has 64 closed curves and D(K5) has 416 dimer
coverings.

We consider two sets of cycles on K5, S = {γ1, γ2, γ3, γ4} and S
′ = {γ′1, γ

′
2, γ

′
3, γ

′
4}, where

γ1 = {a, 4, e, 3, d, 6}

γ2 = {a, 0, b, 1, c, 2, d, 6}

γ3 = {a, 0, b, 7, d, 2, c, 9, e, 4}

γ4 = {a, 0, b, 8, e, 3, d, 2, c, 5}(4.59)

and

γ′1 = {a, 4, e, 9, c, 2, d, 6}

γ′2 = {a, 0, b, 8, e, 3, d, 6}

γ′3 = {a, 0, b, 7, d, 2, c, 5}

γ′4 = {a, 0, b, 1, c, 2, d, 3, e, 4}(4.60)

Here again, any subchain of length 4 (two vertices and two edges) appear in both sets
with the same multiplicity. Now, drawing simultaneously all cycles in a set on the same
surface, slightly shifting each drawing, results in a figure with some crossings between the
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Figure 7. Representation of graph K5 in the projective plane (Left) and its
dart graph in the same representation (Right). Vertices and edges are labelled
with letters and numbers, as used in text.

lines of different cycles. Again, when drawing the two sets S and S ′ on two copies of the
same surface, the parity of the number of crossings always differs in both drawings (Figure
8).

Figure 8. The two sets of cycles S (4.59), and S ′ (4.60) are drawn using
the representation of K5 shown in Figure 7. Both sets have locally the same
configurations but parity of the numbers of crossings differ.

We take EE
D (K5) as reference perfect matching, that is

M0 = {{a0, b0}, {b1, c1}, {c2, d2}, {d3, e3}, {a4, e4},

{a5, c5}, {a6, d6}, {b7, d7}, {b8, e8}, {c9, e9}}(4.61)
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so that each cycle in the two sets S and S ′ are associated to exactly one perfect matchings
in SM = {M1,M2,M3,M4} and S

′
M = {M ′

1,M
′
2,M

′
3,M

′
4}, respectively, where

M1 = {{a0, b0}, {b1, c1}, {c2, d2}, {a5, c5}, {b7, d7}, {b8, e8}, {c9, e9}, {a4, a6}, {d3, d6}, {e3, e4}}

M2 = {{d3, e3}, {a4, e4}, {a5, c5}, {b7, d7}, {b8, e8}, {c9, e9}, {a0, a6}, {b0, b1}, {c1, c2}, {d2, d6}}

M3 = {{b1, c1}, {d3, e3}, {a5, c5}, {a6, d6}, {b8, e8}, {a0, a4}, {b0, b7}, {c2, c9}, {d2, d7}, {e4, e9}}

M4 = {{b1, c1}, {a4, e4}, {a6, d6}, {b7, d7}, {c9, e9}, {a0, a5}, {b0, b8}, {c2, c5}, {d2, d3}, {e3, e8}}

and

M ′
1 = {{a0, b0}, {b1, c1}, {d3, e3}, {a5, c5}, {b7, d7}, {b8, e8}, {a4, a6}, {c2, c9}, {d2, d6}, {e4, e9}}

M ′
2 = {{b1, c1}, {c2, d2}, {a4, e4}, {a5, c5}, {b7, d7}, {c9, e9}, {a0, a6}, {b0, b8}, {d3, d6}, {e3, e8}}

M ′
3 = {{b1, c1}, {d3, e3}, {a4, e4}, {a6, d6}, {b8, e8}, {c9, e9}, {a0, a5}, {b0, b7}, {c2, c5}, {d2, d7}}

M ′
4 = {{a5, c5}, {a6, d6}, {b7, d7}, {b8, e8}, {c9, e9}, {a0, a4}, {b0, b1}, {c1, c2}, {d2, d3}, {e3, e4}}

As a consequence of the properties of sets S and S ′, each dimer appears in both sets SM and
S ′
M with the same multiplicity.

Let A be an arbitrary antisymmetric incidence matrix on D(K5). The contributions of
the cycles in S and S ′ to the Pfaffian expansion of A (equation (2.33) ) are related by

(4.62)

4
∏

i=1

FA(M0, γi) = −
4
∏

i=1

FA(M0, γ
′
i)

This relation derives from the properties of the two sets S and S ′. It can also be seen also as
a property of the perfect matchings in SM and S ′

M alone and any other choice of reference
perfect matching would define two equivalent sets of cycles through equation (2.37). Thus
for every antisymmetric incidence matrix on D(K5) and every reference perfect matching
there exist two sets of closed curves such that relation (4.62) holds. By Lemma 2.34, the
partition function on K5 has no Pfaffian representation.

Proof of Lemma 3.12.

Let G = (V,E) be a finite 2-connected simple graph 2-cell embedded in some smooth sur-
face Σ. We construct 4-regular graph G̃ < G by a succession of elementary transformations
such as vertex splitting, edge addition and edge subdivision [30], taking care that at each
step, the resulting graph is still a 2-connected simple graph embeddable in the same surface.

We first state the following three claims, which we prove for any 2-connected simple graph
G 2-cell embedded in some smooth surface Σ:

• Claim 1: If some vertex in graph G has odd valency, there exists a 2-connected simple
graph G′ < Gembeddable in the same surface, with a strictly smaller number of vertices of
odd valency.

• Claim 2: If all vertices in G have even valency and some vertex in G has valency larger
than 4, there exists a 2-connected simple graph G′

< G embeddable in the same surface,
with all vertices of even valency and a strictly smaller number of vertices of valency larger
than 4.
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• Claim 3: If some vertex in G has valency 2 and all others of valency 4, there exists a
2-connected simple graph G′ < Gembeddable in the same surface, with a strictly smaller
number of vertices of valency 2, and all others of valency 4.

Clearly, the proof of Lemma 3.12 follows easily from the above three claims and transitivity
of · < · : a finite iteration of Claim 1 leads to a graph G′ < G with all vertices of even valency.
Claim 2 allows then for the construction of a graph G′′

< G′ with all vertices of valency 2
or 4. Finally a repeated use of Claim 3 gives a 4-regular graph G′′′ < G′′.

We now prove the above three claims.

Proof of Claim 1. Suppose that G is a 2-connected simple graph 2-cell embedded in
some smooth surface Σ and that some vertex has odd valency. Since the number of such
vertices is necessarily even, one can pick a pair of them, says v1, v2. If they belong to the
same face boundary, we construct a graph G′ by adding an edge {v1, v2} (or a new vertex
v and two edges {v1, v}, {v, v2} if v1 and v2 are adjacent on G). If v1, v2 don’t belong to
the same face boundary, one considers a finite sequence of faces {Fj}j=0,k such that v1 ∈ F 0,
v2 ∈ F k and the boundaries of Fj−1 and Fj share at least one edge, says ej, for all 1 < j ≤ k.
We chose this sequence to be of minimal length and construct G′ by replacing each edge ej
by a new vertex wj and two new edges, each with endvertices wj and a distinct endvertex of
ej (namely, subdividing each edge ej), and adding k+1 edges {v1, w1}, {w1, w2},· · · ,{wk, v2}.
In both cases, v1 and v2 have even valency in G′, while all new vertices have valency 2 or 4. In
addition G′ is a 2-connected simple graph since G is and the endvertices of new edges are not
neighbors in G. Finally G′ can be embedded in the same surface Σ since the transformation
consists in splitting one or more faces of the embedding of G.

Proof of Claim 2. Suppose now that all vertices of G have even valency and let v a
vertex of valency r > 4. We construct a new graph G′ by replacing this vertex in G and its r
edges by a 4-regular tree Tv with r−2

2
points, r external edges and r−4

2
internal edges. Since

a sufficiently small neighborhood of xv is homeomorphic to a disk and Tv of genus zero, one
can identify the external edges of this tree with the edges of v in G in such a way that G′

can still be embedded on Σ. By construction G′ is still a simple graph and it is 2-connected
since no new vertex is separating.

Proof of Claim 3. Suppose that some vertices of G have valency 2 and all others valency
4. Let v be a vertex of valency 2. If G is a simple graph distinct from K3, one of the faces
of the embedding which contains v has length at least 4, so one can pick two distinct edges
on the boundary of this face with endvertices distinct from v. Now one construct G′ from G
by adding one subdivision vertex on these two edges , says w1 and w2 and the three edges
{v, w1}, {v, w2} and {w1, w2}. the three points v, w1 and w2 have valency 4 in G′ so G′ has
one point of valency 2 less than G. Furthermore the transformation consists in splitting a
face so that G′ can still be embedded in Σ. Furthermore G′ is again a 2-connected simple
graph. If G identifies to the graph K3 , one may consider K2,2 < K3, and proceed as above.

Proof of Proposition 3.13.

Let G = (V,E) be a planar 2-connected 4-regular graph and BG a cycle basis on G as
in McLane’s planarity criterion 1.1. An important property of such a basis is that none of
its subsets can form a double cover of a proper subset of E(v), for any vertex v ∈ V . For
completeness, we give here a short proof of this property [20]:
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Suppose that this property is false at some vertex v, and call a cluster the proper subset of
E(v) covered twice. Since BG verifies McLane’s criterion, every element of BG either belong
to the covering and has two edges in the cluster, or does not belong to it, and has thus 0
edges in it. The intersection with the cluster thus contains an even number of edges and
this holds true also for all elements generated from BG by finite difference. However, by
hypothesis, there is at least one edge at v outside the cluster, and since G is 2-connected,
there exists a cycle in C(G) containing whichever pair of edges in E(v); and in particular
exactly that edge and one edge in the cluster. This is in contradiction with the fact that BG
is a cycle basis for C(G), which proves the above property.

We now consider an incidence matrix AG and notations as in (3.18)–(3.27). We prove that
conditions of Proposition 3.28 can hold simultaneously for all cycles in BG.

We first consider the site equations (3.29). Let v ∈ V and γ ∈ BG such that γ ∋ v. When
rewritten in the original variables (see Table 1), the related site equation may appear in
three different forms, depending on which edges in E(v) belong to γ:

svs̄v + tv t̄v = 0 if γ ∩ E(v) = {e1, e4} or {e2, e3}

tv t̄v + uvūv = 0 if γ ∩ E(v) = {e1, e2} or {e3, e4}(4.63)

uvūv + svs̄v = 0 if γ ∩ E(v) = {e1, e3} or {e2, e4}

Equations at different vertices are obviously independent. Suppose that there are two cy-

cles in BG passing through v and associated to a different equation in (4.63). They share
necessarily exactly one edge in E(v). Now take any other cycle in BG passing through v.
By McLane’s criterion, it can neither share the common edge (already appearing twice), nor
share a distinct edge with each (which would form a cluster of 3). Thus it is necessarily
disjoint in E(v) from one of the other cycle, and the associated equation is the same. Thus
at every vertex v, the site equations associated to all elements of BG are at most two, and
admit a nowhere zero solution.

Note that all three equations together have no nowhere zero solution as it would give
svs̄v = tv t̄v = uvūv = 0.

We suppose from now on that site entries of the incidence matrix have been given non
zero values so that all site equations hold for all γ ∈ BG, and we consider the set of edge
equations.

We consider a cycle γ = (Vγ, Eγ) in BG with its elements ordered as in Equations (3.21)–
(3.22). For every pair (v, e) ∈ Vγ × Eγ with v incident on e, we define the following ratio

Rγ
v,e =















U γ

i T̄
γ

i

Sγ

i

if ∃ i ∈ {1, · · · , rγ} such that e = eγi and v = vγi

U γ

i+1T
γ

i+1

S̄Γ
i+1

if ∃ i ∈ {1, · · · , rγ} such that e = eγi and v = vγi+1

(4.64)

The ratio Rγ
v,e depends on the intersection of γ with E(v), and is independent on its

orientation. On each vertex, this ratio may take twelve different expressions in terms of the
edge entries, which can be computed from Table 1 and are reported here in Table 2.
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e e′ e1v e2v e3v e4v

e1v
sv uv
t̄v

tv sv
ūv

uv tv
s̄v

e2v
sv ūv
tv

ūv t̄v
s̄v

t̄v sv
uv

e3v
tv s̄v
uv

ūv tv
sv

s̄v ūv
t̄v

e4v
uv t̄v
sv

t̄v s̄v
ūv

s̄v uv
tv

Table 2. Expression of the ratio Rγ
v,e for a vertex v, an edge e and a cycle γ

such that γ ∩ E(v) = {e, e′}. This expression is written as a function of the
location of e, e′ in the ordered set E(v) = {e1v, e

2
v, e

3
v, e

4
v}.

Let e be an edge on graph G with endvertices v and w, and γ be a cycle in BG containing
e. The associated edge equation reads

b2e = −R
γ
v,eR

γ
w,e(4.65)

Now consider two distinct cycles γ and γ′ in BG passing through a same edge e with
endvertex v. By McLane’s criterion, they cannot have two successive edges in common, since
it would form a cluster of two edges. Thus, up to a permutation, and possibly, exchanging
the roles of γ and γ′, one can suppose that γ ∩ E(v) = {e1v, e

4
v} and γ

′ ∩ E(v) = {e1v, e
2
v}, so

that e1v is their common edge at v. From Table 2, the associated ratios read

Rγ

v,e1v
=
uvtv
s̄v

Rγ′

v,e1v
=
svuv
t̄v

The site equation associated to γ at v reads

svs̄v + tv t̄v = 0

which implies

Rγ

v,e1v
= −Rγ′

v,e1v

This relation is invariant under any even permutation on E(v), so we get the following result.
Two distinct cycles γ and γ′ in BG passing through a same edge e with endvertex v have
opposite ratio:

Rγ
v,e = −R

γ′

v,e(4.66)

Thus, since the left hand side of Equation (4.65) is quadratic in the ratios,it is invariant
when considering different cycles in BG passing through the same edge.

Thus edge equations are identical for different cycles at the same edge, and are also
algebraically independent for different edges. Hence, the whole set of edge equation can be
solved simultaneously for all edges and all cycles in BG.
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We now assume that the coefficients of the incidence matrix have been chosen so that both
site and edge equations are fulfilled, and consider the cycle equations (3.31), for all cycles
in BG. We first note that these equations are not fully independent from the edge and site
equations. Multiplying all edge equations associated to a given cycle γ ∈ BG gives

(4.67)

rγ
∏

i=1

(

Bγ
i

)2
= (−1)rγ

rγ
∏

i=1

T γ
i T̄

γ
i

(

Ūγ
i

)2

Sγ
i S̄

γ
i

=

rγ
∏

i=1

(

Ūγ
i

)2

where the last equality comes from the use of site equations (3.29). Thus for every cycle
γ ∈ BG, we have

(4.68)

rγ
∏

i=1

Bγ
i = −ǫγ

rγ
∏

i=1

Ūγ
i

with ǫγ ∈ {−1, 1}.

We thus define a new set of variables {ǫe}e∈E with value in {−1, 1}, and consider the set
of equations

(4.69)
∏

e∈γ

ǫe = ǫγ

for all γ in BG.

Now the independence of the cycles as elements of the (vector) basis BG implies the
independence of equations in (4.69) and thus insures the existence of a solution with {ǫe}e∈E
in {−1, 1}. Now for every edge e such that ǫe = −1, we change the sign of the two associated
edge entries in the incidence matrix. The new edge and site entries are all nonzero and
such that Equations (3.29)–(3.31) hold for all cycles in BG. Thus, by Proposition 3.28, there
exists a reference perfect matching M0 such that Equation (3.32) holds for all cycle γ ∈ BG.
By Lemma 2.34, the partition function on G admits a Pfaffian representation.

Proof of Lemma 3.24.

For every vertex v, the set of permutations on E(v) is homeomorphic to S4. There are
exactly two permutations σ in S4, with a prescribed value of two images, which differ by a
transposition. Thus they have a different signature and only one has a positive one. The
twelve permutations are listed explicitely in the first column of Table 1.

Proof of Lemma 3.34.

Suppose G1 is a 2-regular simple graph embedded in some surface S. Using Lemma 3.12,
there exists a 4-regular, 2-connected simple graph G′

0 < G1 embedded in the same surface.
Let K be the number of faces in this embedding which closure is not homeomorphic to a
closed disk. If k 6= 0, we construct recursively a sequence of graphs G′

1, . . . , GK such that
G′

k < G′
k−1 for all k ∈ {1, · · · , K} so that G′

K has a strong embedding in S.

For k in {0, · · · , K − 1}, suppose that G′
k is embedded in S . We pick one face which

closure is not homeomorphic to a closed disk, and denote by γ the closed path around this
face, which can be described as a succession of vertices and edges as

γ = {v1, e1, · · · , vi, ei, · · · , vr, er}(4.70)



36 THIERRY GOBRON

where r is the length of the path and {vi}i∈{1,··· ,r} (respectively {ei}i∈{1,··· ,r}) are vertices
(respectively edges) in G′

k such that vi is incident with ei−1 and ei for all i ∈ {1, · · · , r} (we
assume that indices are defined modulo r). Since γ is a path round a face, every edge in
γ appears at most twice and successive edges have to be distinct (since G′

k has no vertex
incident with only one edge). Denote by I1 ⊂ {1, · · · , r} the indices of edges appearing only
once in γ and by I2 the set of pairs of indices associated to edges appearing twice in γ

I2 = {(i, j), 1 ≤ i < j ≤ r, ei = ej}(4.71)

We construct Gk′+1 starting from G′
k as follows: on each edge on the path, we add one

(respectively two) subdivision points according to its number of occurrences in γ. In other
words, we add r vertices {wi}i∈{1,··· ,r} to G

′
k, delete all edges in γ and replace ei by two edges

(vi, wi) and (wi, vi+1) if i ∈ I1, or by three edges (vi, wi) (wi, wj) and (wj, vi+1) if (i, j) ∈ I2.
Finally we add r edges between subdivision points, (w1, w2), (w2, w3), . . . , (wr, w1). Note
that each new edge has its endvertices on successive edges on the boundary of the face, they
can be drawn on it without crossing, so that the resulting graph G′

k+1 can be embedded on
the same surface S. Furthermore, it is 4-regular, since new vertices have four edges incident
on it, and 2-connected since G′

k is. Gk′+1 has r more vertices and 2r more edges than Gk.
On the embedding on S, the r+1 new faces have length 3, 4, 5 or r, and are all bounded by
cycles since all their vertices are distinct. Other faces have not changed except by possibly
adding one subdivision point on some edges, and there is one face less which boundary is
not a cycle. Finally Gk′+1 < Gk since it is constructed from it by adding subdivision points
and edges.

Thus, starting from G′
0 and iterating K times this construction, we obtain a graph G′

K

embedded in S with all faces bounded by cycles. Graph G′
K is 4-regular and 2-connected

and by transitivity, we also have G′
K < G1

Proof of Lemma 3.35.

The proof of this lemma is partly similar to that of Proposition 3.13. In fact, as in the
planar case, no subset of F∗

0 (G) can form a cluster, that is a double cover of a proper subset
of E(v)) at some vertex v ∈ V . This implies that all results in the proof of Proposition
3.13 hold true in the non planar orientable case, for the restricted set of cycles F∗

0 which
generates the face system and not for the whole basis.

For every v in V , the associated vertex equations consist in a system of two equations
out of the three possible ones written in Equation (4.63), which has clearly solutions in R.
Therefore we suppose from now on that all vertex entries of the incidence matrix have been
given a real non zero value so that the set of vertex equations for all vertices and all cycles
in F∗

0 (G), are fulfilled.

We now consider the ratios Rγ
v,e defined in 4.64. We have already noted that their value

does not depend on the orientation of the associated cycle γ, and that if two cycles pass
trough the same edge, the ratios have opposite value. Here we show that the two ratios
associated to the same cycle γ at a given vertex, says vγi , have values with opposite signs.
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Indeed, from the definition (4.64), we have

Rγ

v
γ
i ,e

γ
i

=
Uγ
i T̄

γ
i

Sγ
i

(4.72)

Rγ

v
γ
i ,e

γ
i−1

=
Uγ
i T

γ
i

S̄γ
i

(4.73)

while the vertex equation reads

Sγ
i S̄

γ
i + T γ

i T̄
γ
i = 0(4.74)

and thus

Rγ

v
γ
i ,e

γ
i
Rγ

v
γ
i ,e

γ
i−1

= −
(

Uγ
i

)2
< 0(4.75)

Therefore the ratios at every vertex are alternating signs; at a given vertex v, either Rγ
v,e >

0 and Rγ

v,πv(e)
< 0 for all edges e ∈ E(v) and all cycles γ such that γ ∩E(v) = {e, πv(e)}, or

all signs are simultaneously reversed. We also note that given a solution (sv, tv, uv, s̄v, t̄v, ūv),
one gets another solution by reversing the signs of uv and ūv, for which all ratio at v change
sign. Thus given a rotation system Π = (πv)v∈V , one can choose the solutions of the site
equations so that the ratios Rγ

v,e > 0 simultaneously for all v ∈ V , all e ∈ E(v) and all
γ ∈ F∗

0 (G) such that γ ∩ E(v) = {e, πv(e)}.

Now consider an edge e ∈ E with endvertices v and w. If its signature λ(e) = +1, a
cycle γ passing through e behaves either according to πv on v and πw on w, or according to
π−1
v on v and π−1

w on w. Thus either γ ∩ E(v) = {π−1
v (e), e} and γ ∩ E(w) = {e, πw(e)}, or

γ ∩ E(w) = {π−1
w (e), e} and γ ∩ E(v) = {e, πv(e)}. Therefore the two ratios Rγ

v,e and Rγ
w,e

have opposite sign and the associated edge equation

b2e = −R
γ
v,eR

γ
w,e > 0(4.76)

has a solution in R. In the other case, λ(e) = −1, a cycle γ passing through e behaves
either according to πv on v and π−1

w on w, or according to π−1
v on v and πw on w. Thus

either γ ∩ E(v) = {π−1
v (e), e} and γ ∩ E(w) = {π−1

w (e), e} , or γ ∩ E(w) = {e, πw(e)} and
γ ∩E(v) = {e, πv(e)}. In that case, the two ratios Rγ

v,e and R
γ
w,e have the same sign and the

associated edge equation

b2e = −R
γ
v,eR

γ
w,e < 0(4.77)

has only purely imaginary solutions.

If the surface is orientable, there exists an embedding scheme with λ(·) = +1, which
implies that there exists an incidence matrix AG with real coefficients such that Equation
(3.37) holds.

Suppose now that there exists an incidence matrix with real coefficients such that Equa-
tions (3.29)–(3.31) hold for all cycles in F∗

0 (G). Starting from an embedding scheme (Π, λ),
we define a new rotation system Π̃ = (π̃v)v∈V such that on each vertex v ∈ V ,

π̃v =

{

πv if ∃γ ∈ F∗
0 (G) such that γ ∩ E(v) = {e, πv(e)} and R

γ
v,e < 0

π−1
v otherwise

(4.78)

Due to the alternating sign properties of the ratios studied previously, one gets that for all
v ∈ V and all γ ∈ F∗

0 (G) such that γ ∩ E(v) = {e, π̃v(e)}, one has Rγ
v,e < 0. Since the right

hand side of Equation (4.65) has to be positive for all edges e ∈ E, all cycles in F∗
0 (G) can
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be oriented so that on each vertex the ratio on the incomming edge is negative, which in
turn implies that they behave everywhere according to the rotation system Π̃. The surface
is thus orientable.

5. Grassmann Algebra and representation of Pfaffians.

In this section, we introduce a Grassmann Algebra and use it to represent Pfaffians as
Grassmann integrals. We refer to references [24] and [25] for a thorough introduction on this
matter. We first recall the basic properties which are useful here, and use this representation
to give a proof of Proposition 3.28. We end this section by a short proof of Proposition 2.42
using the same representation.

A Grassmann algebra over R (or C) is an associative algebra with a set of generators
{ξi}i∈{1,··· ,n} obeying the relations

(5.1) ξiξj = −ξjξi ∀i, j ∈ {1, · · · , n}

and in particular

(5.2) ξ2i = 0 ∀i ∈ {1, · · · , n}

Integration on the Grassmann algebra [24] is defined through the following formulas,

(5.3)

∫

dξi = 0

∫

dξi ξi = 1

and multiple integrals are defined as iterates

(5.4)

∫

dξirdξir−1 · · · dξi1 ξi1 · · · ξir−1ξir = 1 for all 1 ≤ i1 < · · · < ir−1 < ir ≤ n

With this prescription, integrals of products of factors depending on disjoints subsets of
Grassmann variables is just the product of the integrals,

∫

dξir+s
· · · dξir+1dξir · · · dξi1φ1

(

ξi1 , · · · , ξir
)

φ2

(

ξir+1, · · · , ξir+s

)

=

[

∫

dξir · · · dξi1φ1

(

ξi1, · · · , ξir
)

][

∫

dξir+s
· · · dξir+1φ2

(

ξir+1, · · · , ξir+s

)

]

(5.5)

Here, our main interest in the introduction of a Grassmann algebra is the following. Let
A be an antisymmetric matrix of even order n, then its Pfaffian can be expressed as the
following Grassmann integral [25]:

(5.6) Pf(A) =

∫

dξn · · · dξ1 exp
{1

2

n
∑

i,j=1

ξiAi,jξj
}

Proof of Proposition 3.28

For the purpose of using identity (5.6) in the context of Proposition 3.28, we introduce
a Grassmann algebra of order n = |VD(G)|, with generators indexed by the darts on G,
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{ξd}{d∈VD(G)} and write the Pfaffian of the antisymmetric incidence matrix A defined in
(3.17) as

(5.7) Pf(A) =

∫ ←−
∏

d∈VD(G)

dξd exp
{

LG(ξ)
}

with

(5.8) LG(ξ) =
∑

{d,d′}∈ED(G)

ξdAd,d′ξd′

In Equation (5.7), we have also used the shorthand notation
←−∏

to indicate that the differ-
ential elements in the product have to be ordered from left to right in decreasing order with
respect to the (lexicographic) order defined on VD(G). Note also that in (5.8), the sum is
over all edges in ED(G), which are defined as unordered pairs of elements in VD(G); since
A is antisymmetric and Grassmann generators anticommute, ξdAd,d′ξd′ = ξd′Ad′,dξd, that is,
the value of each summand is independent on the choice of which representation, (d, d′) or
(d′, d) is chosen for the unordered pair {d, d′}, the right hand side of (5.8) is well defined
and Equation (5.7) identifies with (5.6). Up to a permutation of positive signature, we may
write

←−
∏

d∈VD(G)

dξd =
∏

v∈V

dξ(v,e4v)dξ(v,e3v)dξ(v,e2v)dξ(v,e1v)(5.9)

where for all v ∈ V , e1v < e2v < e3v < e4v denote the four ordered edges at v.

Given a weight function w on E, the Pfaffian of the related weighted incidence matrix can
be expanded as a sum over the set of closed curves on G

(5.10) Pf(A(w)) =
∑

C∈C(G)

∏

e∈C

w(e)FA(C)

For any closed curve C ∈ C(G), the expression of FA(C) in terms of a Grassmann intergral
can be obtained through an expansion of the exponential in (5.7) over all subsets of EE

D (G).
Non zero terms necessarily involve an even number of generator at each vertex v ∈ V , and
thus correspond to closed curves on G. The contribution to FA(C) can then be readily
identified as,

FA(C) =

∫ ←−
∏

d∈VD(G)

dξd

[

∏

{d,d′}∈EE
D(C)

Ad,d′ξdξd′
]

exp
{

∑

{d,d′}∈EV
D (G)

ξdAd,d′ξd′
}

(5.11)

where for clarity, we have denoted by EE
D(C) the (canonical) image of the closed curve C on

the dart graph,

(5.12) EE
D (C) =

{

{(v, e), (v′, e)} ∈ EE
D (G) : e ∈ C

}

Now, let Γ = (VΓ, EΓ) be a cycle of length r on G. We note VD(Γ) the set of darts with
vertex in VΓ

(5.13) VD(Γ) =
{

(v, e) ∈ VD(G), v ∈ VΓ, e ∈ E(v)
}
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and we partition the elements of EE
D(C) and EV

D (G) according to their intersection with
VD(Γ),

EE
k (C) =

{

{(v, e), (v′, e)} ∈ EE
D (C) : |VD(Γ) ∩ {(v, e), (v

′, e)}| = k
}

, k = 0, 1, 2(5.14)

EV
k =

{

{(v, e), (v, e′)} ∈ EV
D (G) : |VD(Γ) ∩ {(v, e), (v, e

′)}| = k
}

, k = 0, 2(5.15)

These sets are pairwise disjoints and we have

EE
D(C) = EE

0 (C) ∪ E
E
1 (C) ∪ E

E
2 (C)(5.16)

EV
D (G) = EV

0 ∪ E
V
2(5.17)

We thus rewrite the expression of FA(C) using this decomposition,

FA(C) =

∫ ←−
∏

d∈VD(G)

dξd

[

∏

{d,d′}∈EE
0 (C)

Ad,d′ξdξd′
]

exp
{

∑

{d,d′}∈EV
0

ξdAd,d′ξd′
}

×
[

∏

{d,d′}∈EE
1 (C)

Ad,d′ξdξd′
]

×
[

∏

{d,d′}∈EE
2 (C)

Ad,d′ξdξd′
]

exp
{

∑

{d,d′}∈EV
2

ξdAd,d′ξd′
}

In order to factorize this expression, we rewrite the product over EE
1 as

∏

{d,d′}∈EE
1 (C)

Ad,d′ξdξd′ =
[ ←−

(Γ)

∏

{d,d′}∈EE
1

(C)

d′∈VD(Γ)

Ad,d′ξd

][ −→
(Γ)

∏

{d,d′}∈EE
1

(C)

d′∈VD(Γ)

ξd′
]

(5.18)

where the notation
←−∏ (Γ)

(respectively
−→∏ (Γ)

) indicates that the factors have to be written
in decreasing (respectively increasing) order with respect to an order on VD(Γ) to be pre-
cised later. The above identity just states that the reordering involves an even number of
transpositions, whatever the order chosen on VD(Γ).

Using identity (5.5), we can now write FA(C) as a product of two factors

(5.19) FA(C) = FA(C,Γ)FA(C,Γ)

where

FA(C,Γ) =

∫ ←−
∏

d∈VD(G)\VD(Γ)

dξd

[

∏

{d,d′}∈EE
0 (C)

Ad,d′ξdξd′
][ ←−

(Γ)

∏

{d,d′}∈EE
1

(C)

d′∈VD(Γ)

Ad,d′ξd

]

×exp
{

∑

{d,d′}∈EV
0

ξdAd,d′ξd′
}

(5.20)
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and

FA(C,Γ) =

∫ ←−
∏

d∈VD(Γ)

dξd

[

∏

{d,d′}∈EE
2 (C)

Ad,d′ξdξd′
][ −→

(Γ)

∏

{d,d′}∈EE
1 (C)

d′∈VD(Γ)

ξd′
]

× exp
{

∑

{d,d′}∈EV
2

ξdAd,d′ξd′
}

(5.21)

Since by construction, C and C△Γ coincide on E \ Γ, one has necessarily

EE
0 (C△Γ) = EE

0 (C)

EV
0 (C△Γ) = EV

0 (C)(5.22)

Hence

(5.23) FA(C△Γ,Γ) = FA(C,Γ)

We now prove that FA(C△Γ,Γ) and FA(C,Γ) are equal. We first define the following
notation for the generators indexed in VD(Γ): for all i ∈ {1, · · · , r} and all k ∈ {1, 2, 3, 4},
we write

(5.24) ηki = ξ(vi,σi(ekvi ))

where σi is the permutation defined in Lemma 3.24. We also define

(5.25) ψk
i (C) =

{

ηki if σi(e
k
vi
) ∈ C

1 otherwise.

and given η
i
= {η1i , η

2
i , η

3
i , η

4
i },

(5.26) Li(ηi) = Siη
1
i η

2
i + Siη

3
i η

4
i + Tiη

1
i η

3
i + T iη

4
i η

2
i + Uiη

1
i η

4
i + U iη

2
i η

3
i

Using these and notations (3.27), (3.23), we rewrite the expression of FA(C,Γ) as

FA(C,Γ) =

∫ ←−
(r,4)

∏

(i,k)=(1,1)

dηki

[

∏

i:ei∈C

Bi η
4
i−1η

1
i

]

×
[ −→

r

∏

i=1

(

ψ2
i (C)ψ

3
i (C)

)

]

exp
{

∑

i

Li(ηi)
}

=

∫ ←−
(r,4)

∏

(i,k)=(1,1)

dηki

[

∏

i:ei∈C

Bi

] [

r
∏

i=1

ψ4
i−1(C)ψ

1
i (C)

]

×
[ −→

r

∏

i=1

(

ψ2
i (C)ψ

3
i (C)

)

]

exp
{

∑

i

Li(ηi)
}

(5.27)

where the order of the “differentials” is induced by the lexicographic order on {1, · · · , r} ×
{1, · · · , 4}. Each factor in the first product contains an even number of generators (2 or 0
depending on whether ei ∈ C and thus commute with any other term. Thus we can write



42 THIERRY GOBRON

FA(C,Γ) =

∫ ←−
(r,4)

∏

(i,k)=(1,1)

dηki

[

∏

i:ei∈C

Bi

]

×ψ4
0(C)

[ −→
r−1

∏

i=1

(

ψ1
i (C)ψ

2
i (C)ψ

3
i (C)ψ

4
i (C)

)

][

(

ψ1
r (C)ψ

2
r(C)ψ

3
r(C)

]

exp
{

∑

i

Li(ηi)
}

= (−1)|{e0}∩C|

∫ ←−
(r,4)

∏

(i,k)=(1,1)

dηki

[

∏

i:ei∈C

Bi

] [

r
∏

i=1

(

ψ1
i (C)ψ

2
i (C)ψ

3
i (C)ψ

4
i (C)

)

exp
{

Li(ηi)
}

]

where in the last line, the term ψ4
0(C) = ψ4

r (C) has been shifted on the right of all other
terms, taking into account that the total number of generators is even, leading to a possible
minus sign by anticommutation. Factorization and shifts of the exponential terms takes into
account that the arguments are quadratic in the generators and thus commute with other
terms.

FA(C,Γ) can then be expressed as a product of r Grassmann integrals,

(5.28) FA(C,Γ) = (−1)|{e0}∩C|
[

∏

i:ei∈C

Bi

]

r
∏

1

Wi(C,Γ)

with

Wi(C,Γ) =

∫

dη4i dη
3
i dη

2
i dη

1
i

[

ψ1
i (C)ψ

2
i (C)ψ

3
i (C)ψ

4
i (C)

]

exp
{

Li(ηi)
}

(5.29)

The expression of Wi(C,Γ) can be computed for all possible values of the {ψk
i (C)}1≤k≤4.

Since C is a closed curve, vi is incident with an even number of edges in C, and there are thus
eight possible configurations, giving rise to eight possible expressions for Wi(C,Γ), listed in
the table below as a function of which edges (indexed relatively to Γ) are in C

{k|σi(e
k
i ) ∈ C} Wi(C) {k|σi(e

k
i ) ∈ C} Wi(C)

∅ SiSi + TiT i + UiU i {1, 4} U i

{1, 2, 3, 4} 1 {2, 3} Ui

{1, 2} Si {2, 4} −Ti

{3, 4} Si {1, 3} T i

Table 3. Expression of the Grassmann integral Wi(C) defined in Equation
(5.29) for the eight possible configurations for C on E(vi), as a function of
their ordering with respect to cycle Γ (Lemma 3.24). Note that first and third
columns are exchanged under the transformation C → C△Γ.
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Now define the following two functions

ϕi(C) =







UiT i

Si

if σi(e
4
i ) ∈ C

1 otherwise.
(5.30)

ϕi(C) =







UiSi

T i

if σi(e
1
i ) ∈ C

1 otherwise.
(5.31)

Under the hypothesis of Proposition 3.28, Equations (3.29) are fulfilled. In Table 4, we
check by direct inspection that for all i ∈ {1, · · · , r}, the following relation holds between
Wi(C) and Wi(C△Γ):

(5.32)
1

Ui

ϕi(C)Wi(C)ϕi(C) = Wi(C△Γ)

{k|σi(e
k
i ) ∈ C} ϕi(C) Wi(C) ϕi(C)

ϕi(C)Wi(C)ϕi(C)

Ui

Wi(C△Γ))

∅ 1 UiU i 1 U i U i

{1, 4}
UiSi

T i

U i

UiT i

Si

UiU i UiU i

{1, 2, 3, 4}
UiSi

T i

1
UiT i

Si

Ui Ui

{2, 3} 1 Ui 1 1 1

{1, 2}
UiSi

T i

Si 1 −Ti −Ti

{2, 4} 1 −Ti
UiT i

Si

Si Si

{3, 4} 1 Si

UiT i

Si

T i T i

{1, 3}
UiSi

T i

T i 1 Si Si

Table 4. Relation between Wi(C) andWi(C△Γ)) under the hypothesis that
SiSi + TiT i = 0 (Equation (3.29)). The table shows that relation (5.32) holds
for the eight possible local configurations
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We suppose now that Equations (3.29), (3.29) hold for all i ∈ {1, · · · , r} together with
(3.31). We have

FA(C,Γ) = (−1)|{e0}∩C|
[

∏

i:ei∈C

Bi

][

r
∏

i=1

Wi(C,Γ)
]

= −(−1)|{e0}∩C|
[

∏

i:ei∈C

Bi

][

r
∏

i=1

Bi

][

r
∏

i=1

1

Ui

][

r
∏

i=1

Wi(C,Γ)
]

= −(−1)|{e0}∩C|
[

∏

i:ei∈C

B2
i

][

∏

i:ei 6∈C

Bi

][

r
∏

i=1

1

Ui

][

r
∏

i=1

Wi(C,Γ)
]

= −(−1)|{e0}∩C|
[

∏

i:ei 6∈C

Bi

][

∏

i:ei∈C

UiT i

Si

Ui+1Si+1

T i+1

][

r
∏

i=1

1

Ui

][

r
∏

i=1

Wi(C,Γ)
]

= −(−1)|{e0}∩C|
[

∏

i:ei 6∈C

Bi

][

r
∏

i=1

ϕi(C)ϕi+1(C)
][

r
∏

i=1

1

Ui

][

r
∏

i=1

Wi(C,Γ)
]

= −(−1)|{e0}∩C|
[

∏

i:ei 6∈C

Bi

][

r
∏

i=1

ϕi(C)Wi(C,Γ)ϕi(C)

Ui

]

= (−1)|{e0}∩(C△Γ)|
[

∏

i:ei∈C△Γ

Bi

][

r
∏

i=1

Wi(C△Γ,Γ)
]

= FA(C△Γ,Γ)(5.33)

To get the second line we have introduced (3.31) as an identity

(5.34)
[

r
∏

i=1

Bi

][

r
∏

i=1

1

Ui

]

= −1

For the fourth line of (5.33), we have used Equations (3.30) for all i such that ei ∈ C; To get
the fifth line, we used the definitions (5.30)–(5.31); In the sixth line appears the left hand
side of (5.32) and the seventh is just expression (5.28) for C△Γ.

Now inserting Equation (5.23) and the result of Equation (5.33) in Equation (5.19), one
gets

FA(C) = FA(C,Γ)FA(C,Γ)

= FA(C△Γ,Γ)FA(C△Γ,Γ)

= FA(C△Γ)(5.35)

Proposition 3.28 is proven.

Proof of Proposition 2.42.

We conclude this section by a proof of Proposition 2.42. The Pfaffian reduction formula
is obviously not new but we found no clear recent textbook reference. In addition, one of
the few available references [23] appears to have some misprints. We report here an easy but
rather lengthy proof.
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We prove Proposition 2.41 by induction on p. Let us first prove Equation (2.42) for p = 1.
We set K = {α, β}, where α < β is a pair of indices in {1, · · · , 2n} such that Aα,β 6= 0 and
write the Pfaffian of A as an integral over a Grassmann algebra of dimension 2n (Equation
(5.6)). Expand the terms in the exponential containing elements indexed by K gives,

Pf(A) =

∫ ←−
2n

∏

k=1

dξk exp
{1

2

2n
∑

i,j=1

Ai,jξiξj
}

=

∫ ←−
2n

∏

k=1

dξk exp
{1

2

2n
∑

i,j=1
|{i,j}∩{α,β}|=∅

Ai,jξiξj +
∑

i 6=α

Ai,βξiξβ +
∑

j 6=β

Aαξqξβ + Aα,βξαξβ
}

=

∫ ←−
2n

∏

k=1

dξk exp
{1

2

2n
∑

i,j=1
|{i,j}∩{α,β}|=∅

Ai,jξiξj
}

×
(

1 +
∑

i 6=α

Ai,βξiξβ
)(

1 +
∑

j 6=β

Aαξαξj
)(

1 + Aα,βξαξβ
)

=

∫ ←−
2n

∏

k=1

dξk exp
{1

2

2n
∑

i,j=1
|{i,j}∩{α,β}|=∅

Ai,jξiξj
}(

Aα,β −
∑

i6=α
j 6=β

Ai,βAα,jηiηj
)

ηαηβ(5.36)

After integration over (ηα, ηβ), the expanded part reduces to the sum of a non zero constant
(Aα,β), and a product of two linear combinations of Grassmann generators. Thus successive
powers of this second term are zero and one can re-exponentiate this part. We have,

Pf(A) = (−1)β−α+1

∫ ←−
2n

∏

k=1
k 6=α,β

dξk exp
{1

2

∑

i,j 6=α,β

Ai,jηiηj
}

×
(

Aα,β −
∑

p,q 6=α,β

Ap,αAq,βηpηq
)

= (−1)β−α+1

∫ ←−
2n

∏

k=1

dξk exp
{1

2

∑

i,j 6=α,β

Ai,jηiηj − A
−1
α,β

∑

p,q 6=α,β

Ap,αAq,βηpηq
}

= (−1)β−α+1

∫ ←−
2n

∏

k=1

dξk exp
{ 1

2Aα,β

∑

i,j 6=α,β

(Ai,jAα,β − Ai,αAj,β + Aj,αAi,β)ηiηj
}

(5.37)

In order to get the correct signs in all terms of the sum, we introduce the following change
of variables

η̃i =

{

−ηi if α < i < β

ηi otherwise
(5.38)
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The Jacobian of the transformation is (−1)α+β−1 and we get, using homogeneity

Pf(A) =
( 1

Aα,β

)n−2
∫

(

∏

k 6=α,β

dη̃k
)

exp
{

∑

i<j
i,j 6=α,β

Pf(A{i,j,α,β})η̃iη̃j
}

=
( 1

Aα,β

)n−2
∫

(

∏

k 6=α,β

dηk
)

exp
{1

2

∑

i,j 6=α,β

A
{α,β}
i,j ηiηj

}

= Pf(A{α,β})
−(n−2) Pf(A{α,β})(5.39)

Equation (2.42) is proven for p = 1. We now fix p with 1 < p < n and suppose that equation
(2.42) holds for all p′ < p. We consider K a subset of indices of order 2p in {1, · · · , 2n} such
that Pf(AK) 6= 0. Thus there exists at least one proper submatrix of AK , says AK1 with
|K1| = 2p1, 0 < p1 < p, such that Pf(AK1) 6= 0. Let K2 = K \K1 and p2 = p− p1. We first
have the two following identities which are a direct consequence of the definitions (2.39) and
(2.40):

(5.40)
[

AK1∪K2

]

K1
= AK1

(5.41)
[

AK1
]

K2
=

[

AK1∪K2

]K1

Now applying the recurrence hypothesis for p1 for the matrix AK1∪K2 and both (5.40) and
(5.41), we first get,

Pf(AK1∪K2) = Pf
([

AK1∪K2

]

K1
)−(p2−1) Pf

([

AK1∪K2

]K1
)

= Pf(AK1)
−(p2−1) Pf

([

AK1
]

K2

)

(5.42)

We also need to prove that both matrices AK1∪K2 and
[

AK1
]K2

are proportional. For every
pair of indices i, j ∈ K \ (K1 ∪K2), we have

(

AK1∪K2
)

i,j
= Pf(AK1∪(K2∪{i,j}))

= Pf
(

AK1

)−p2 Pf
([

AK1
]

(K2∪{i,j})

)

= Pf
(

AK1

)−p2
([

AK1
]K2

)

i,j
(5.43)

Since this relation holds for every entry of both matrices, we have

(5.44) AK1∪K2 = Pf(AK1)
−p2

[

AK1
]K2

Now we can write

Pf(A) = Pf(AK1)
−(n−p1−1) Pf(AK1)

= Pf(AK1)
−(n−p1−1) Pf([AK1]K2)

−(n−p1−p2−1) Pf((AK1)K2)

= Pf(AK1)
−(n−p1−1)+p2(n−p1−p2) Pf([AK1 ]K2)

−(n−p1−p2−1) Pf(AK1∪K2)

= Pf(AK1)−(n− p1 − 1) + p2(n− p1 − p2)− (p2 − 1)(n− p1 − p2 − 1)Pf(AK1∪K2)
−(n−p1−p2−1) Pf(AK1∪K2)
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we have used the hypothesis in the first two lines and equations (5.41), (5.42),(5.44) in the
last two lines, respectively. The exponent of Pf(AK1) being zero in the last line, we finally
get

(5.45) Pf(A) = Pf(AK1∪K2)
−(n−(p1+p2)−1) Pf(AK1∪K2)

which is (2.42) for p = p1 + p2.

Proposition 2.41 is proven.
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Paris, where part of this work has been done.

References

[1] Onsager, L. ,Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys.
Rev. 65, 117149 (1944).

[2] Kac, M. , Ward, J. C. A Combinatorial Solution of the Two-Dimensional Ising Model, Phys. Rev. 88,
1332–1337 (1952).

[3] Potts, R. B. , Ward, J. C. The Combinatorial Method and the Two-Dimensional Ising Model, Prog.
Theor. Phys. 13 38-46 (1955).

[4] Hurst, C. A. , Green, H. S. New Solution of the Ising Problem for a Rectangular Lattice, J. Chem. Phys.
33, 1059 (1960).

[5] Fisher, M. E. Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124, 1664-1672 (1961).
[6] Kasteleyn, P. W. The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961).
[7] Kasteleyn, P. W. Dimer statistics and phase transitions. J. Math. Phys. 4, 287 (1963).
[8] Kasteleyn, P.W. Graph theory and crystal Physics. in Graph Theory and Theoretical Physics, pp. 43–

110. F. Harary ed., Academic Press, London (1967).
[9] Galluccio, A., Loebl, M. On the theory of Pfaffian orientations. I. Perfect matchings and permanents.

Electron. J. Comb. 6, 18 (1999)
[10] Cimasoni, D., Reshetikhin, N. Dimers on surface graphs and spin structures. I. Commun. Math. Phys.

275, 187–208 (2007)
[11] Tesler, G. Matchings in graphs on non-orientable surfaces. J. Combin. Theory Ser. B 78, 198–231 (2000).
[12] Pólya, G. Aufgabe 424. Arch. Math. Phys. Ser. 20, 271 (1913).
[13] Valiant, L.G. The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979).
[14] Thomas, R. A Survey of Pfaffian Orientations of Graphs. in Proceedings of the International Congress

of Mathematicians 2006, Vol III, pp 963–984, M.Sanz-Sole, J. Soria, J. L. Varona, J. Verdera Ed., EMS
Publishing House, Zürich (2007).
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[17] Lu, W.T., Wu, F.Y. Dimer statistics on the Möbius strip and the Klein bottle. Phys. Lett. . A 259,

108–114 (1999)
[18] Lu, W.T., Wu, F.Y. Close-packed dimers on nonorientable surfaces. Phys. Lett. A 293, 235–246 (2002)
[19] MacLane, S. A combinatorial condition for planar graphs, Fund. math. 28, 22 (1937).
[20] Bruhn, H., Diestel, R. MacLane’s theorem for arbitrary surfaces, J. Comb. Theory, B 99, 275–286

(2009) .
[21] Harary, F. Graph Theory, Addison-Wesley, Reading (1969).
[22] Diestel, R. Graph theory, Graduate Texts in Mathematics, Volume 173, 4th edition, Springer-Verlag

ed., Heidelberg (2010).



48 THIERRY GOBRON

[23] Green,H. S., Hurst, C. A. Order-disorder phenomena, Interscience Publishers (London 1964).
[24] Berezin, F.A. The method of second quantification, Academic Press, New York (1966).
[25] Samuel, S. The use of anti-commuting variable integrals in statistical mechanics, I, J. Math. Phys. 21,

2806 (1980).
[26] Fisher, M. E. On the dimer solution of the planar Ising Model, J. Math. Phys. 7, 1776 (1966).
[27] Kuratowski, C. Sur le problème des courbes gauches en Topologie, Fund. Math. 15 271–283 (1930).
[28] Harari, F. Norman, R.Z. Some properties of line digraphs, Rendiconti del Circolo Matematico di Palermo

9, 161 (1960).
[29] Baley Price, G. An introduction to multicomplex spaces and functions, Marcel Dekker, New York (1991).
[30] Mohar,B., Thomassen, C. Graphs on Surfaces Johns Hopkins University Press, Baltimore (2001).
[31] Stahl, S. Generalized embedding schemes, J. Graph Theory 2, 41 (1978).

LPTM, UMR 8089, CNRS - Université de Cergy-Pontoise. 2, avenue Adolphe Chauvin,

Pontoise, 95031 Cergy-Pontoise cedex, France


	1. Introduction
	2. Preliminaries
	3. Main results.
	4. Proofs
	5. Grassmann Algebra and representation of Pfaffians.
	6. Acknowledgments
	References

